diff scripts/estimateprops.R @ 0:2fed32b5aa02 draft

"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/music/ commit 08c6fd3885bdfbf8b5c3f4dcc2d04729b577e3e1"
author bgruening
date Sun, 12 Sep 2021 19:48:26 +0000
parents
children 817eb707bbf4
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/scripts/estimateprops.R	Sun Sep 12 19:48:26 2021 +0000
@@ -0,0 +1,93 @@
+suppressWarnings(suppressPackageStartupMessages(library(xbioc)))
+suppressWarnings(suppressPackageStartupMessages(library(MuSiC)))
+suppressWarnings(suppressPackageStartupMessages(library(reshape2)))
+suppressWarnings(suppressPackageStartupMessages(library(cowplot)))
+## We use this script to estimate the effectiveness of proportion methods
+
+## Load Conf
+args <- commandArgs(trailingOnly = TRUE)
+source(args[1])
+
+## Estimate cell type proportions
+est_prop <- music_prop(
+    bulk.eset = bulk_eset, sc.eset = scrna_eset,
+    clusters = celltypes_label,
+    samples = samples_label, select.ct = celltypes, verbose = T)
+
+
+## Show different in estimation methods
+## Jitter plot of estimated cell type proportions
+jitter.fig <- Jitter_Est(
+    list(data.matrix(est_prop$Est.prop.weighted),
+         data.matrix(est_prop$Est.prop.allgene)),
+    method.name = methods, title = "Jitter plot of Est Proportions")
+
+
+## Make a Plot
+## A more sophisticated jitter plot is provided as below. We separated
+## the T2D subjects and normal subjects by their HbA1c levels.
+m_prop <- rbind(melt(est_prop$Est.prop.weighted),
+               melt(est_prop$Est.prop.allgene))
+
+colnames(m_prop) <- c("Sub", "CellType", "Prop")
+
+m_prop$CellType <- factor(m_prop$CellType, levels = celltypes) # nolint
+m_prop$Method <- factor(rep(methods, each = 89 * 6), levels = methods) # nolint
+m_prop$HbA1c <- rep(bulk_eset$hba1c, 2 * 6) # nolint
+m_prop <- m_prop[!is.na(m_prop$HbA1c), ]
+m_prop$Disease <- factor(sample_groups[(m_prop$HbA1c > 6.5) + 1], # nolint
+                         levels = sample_groups)
+
+m_prop$D <- (m_prop$Disease ==   # nolint
+             sample_disease_group) / sample_disease_group_scale
+m_prop <- rbind(subset(m_prop, Disease == healthy_phenotype),
+               subset(m_prop, Disease != healthy_phenotype))
+
+jitter.new <- ggplot(m_prop, aes(Method, Prop)) +
+    geom_point(aes(fill = Method, color = Disease, stroke = D, shape = Disease),
+               size = 2, alpha = 0.7,
+               position = position_jitter(width = 0.25, height = 0)) +
+    facet_wrap(~ CellType, scales = "free") +
+    scale_colour_manual(values = c("white", "gray20")) +
+    scale_shape_manual(values = c(21, 24)) + theme_minimal()
+
+## Plot to compare method effectiveness
+## Create dataframe for beta cell proportions and HbA1c levels
+m_prop_ana <- data.frame(pData(bulk_eset)[rep(1:89, 2), phenotype_factors],
+                        ct.prop = c(est_prop$Est.prop.weighted[, 2],
+                                    est_prop$Est.prop.allgene[, 2]),
+                        Method = factor(rep(methods, each = 89),
+                                        levels = methods))
+colnames(m_prop_ana)[1:4] <- phenotype_factors
+m_prop_ana <- subset(m_prop_ana, !is.na(m_prop_ana[phenotype_gene]))
+m_prop_ana$Disease <- factor(sample_groups[(  # nolint
+    m_prop_ana[phenotype_gene] > 6.5) + 1], sample_groups)
+m_prop_ana$D <- (m_prop_ana$Disease ==        # nolint
+                 sample_disease_group) / sample_disease_group_scale
+
+jitt_compare <- ggplot(m_prop_ana, aes_string(phenotype_gene, "ct.prop")) +
+    geom_smooth(method = "lm",  se = FALSE, col = "black", lwd = 0.25) +
+    geom_point(aes(fill = Method, color = Disease, stroke = D, shape = Disease),
+               size = 2, alpha = 0.7) +  facet_wrap(~ Method) +
+    ggtitle(compare_title) + theme_minimal() +
+    scale_colour_manual(values = c("white", "gray20")) +
+    scale_shape_manual(values = c(21, 24))
+
+
+pdf(file = outfile_pdf, width = 8, height = 8)
+plot_grid(jitter.fig, jitter.new, labels = "auto", ncol = 1, nrow = 2)
+jitt_compare
+dev.off()
+
+## Summary table
+for (meth in methods) {
+    ##lm_beta_meth = lm(ct.prop ~ age + bmi + hba1c + gender, data =
+    ##subset(m_prop_ana, Method == meth))
+    lm_beta_meth <- lm(as.formula(
+        paste("ct.prop", paste(phenotype_factors, collapse = " + "),
+              sep = " ~ ")),
+        data = subset(m_prop_ana, Method == meth))
+    print(paste0("Summary: ", meth))
+    capture.output(summary(lm_beta_meth),
+                   file = paste0("report_data/summ_", meth, ".txt"))
+}