Mercurial > repos > bgruening > nn_classifier
comparison nn_classifier.xml @ 0:d638aa11a4f0 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tools/sklearn commit 0e582cf1f3134c777cce3aa57d71b80ed95e6ba9
author | bgruening |
---|---|
date | Fri, 16 Feb 2018 09:17:36 -0500 |
parents | |
children | 478034e9826b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:d638aa11a4f0 |
---|---|
1 <tool id="nn_classifier" name="Nearest Neighbors Classification" version="@VERSION@"> | |
2 <description></description> | |
3 <macros> | |
4 <import>main_macros.xml</import> | |
5 </macros> | |
6 <expand macro="python_requirements"/> | |
7 <expand macro="macro_stdio"/> | |
8 <version_command>echo "@VERSION@"</version_command> | |
9 <command><![CDATA[ | |
10 python "$nnc_script" '$inputs' | |
11 ]]> | |
12 </command> | |
13 <configfiles> | |
14 <inputs name="inputs"/> | |
15 <configfile name="nnc_script"> | |
16 <![CDATA[ | |
17 import sys | |
18 import json | |
19 import numpy as np | |
20 import sklearn.neighbors | |
21 import pandas | |
22 import pickle | |
23 | |
24 input_json_path = sys.argv[1] | |
25 params = json.load(open(input_json_path, "r")) | |
26 | |
27 | |
28 #if $selected_tasks.selected_task == "load": | |
29 | |
30 classifier_object = pickle.load(open("$infile_model", 'r')) | |
31 | |
32 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) | |
33 prediction = classifier_object.predict(data) | |
34 prediction_df = pandas.DataFrame(prediction) | |
35 res = pandas.concat([data, prediction_df], axis=1) | |
36 res.to_csv(path_or_buf = "$outfile_predict", sep="\t", index=False) | |
37 | |
38 #else: | |
39 | |
40 data_train = pandas.read_csv("$selected_tasks.infile_train", sep='\t', header=0, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) | |
41 | |
42 data = data_train.ix[:,0:len(data_train.columns)-1] | |
43 labels = np.array(data_train[data_train.columns[len(data_train.columns)-1]]) | |
44 | |
45 selected_algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"] | |
46 | |
47 if selected_algorithm == "nneighbors": | |
48 classifier = params["selected_tasks"]["selected_algorithms"]["sampling_methods"]["sampling_method"] | |
49 sys.stdout.write(classifier) | |
50 options = params["selected_tasks"]["selected_algorithms"]["sampling_methods"]["options"] | |
51 sys.stdout.write(str(options)) | |
52 elif selected_algorithm == "ncentroid": | |
53 options = params["selected_tasks"]["selected_algorithms"]["options"] | |
54 classifier = "NearestCentroid" | |
55 | |
56 my_class = getattr(sklearn.neighbors, classifier) | |
57 classifier_object = my_class(**options) | |
58 classifier_object.fit(data,labels) | |
59 | |
60 pickle.dump(classifier_object,open("$outfile_fit", 'w+')) | |
61 | |
62 #end if | |
63 | |
64 ]]> | |
65 </configfile> | |
66 </configfiles> | |
67 <inputs> | |
68 <expand macro="train_loadConditional" model="zip"><!--Todo: add sparse to targets--> | |
69 <param name="selected_algorithm" type="select" label="Classifier type"> | |
70 <option value="nneighbors">Nearest Neighbors</option> | |
71 <option value="ncentroid">Nearest Centroid</option> | |
72 </param> | |
73 <when value="nneighbors"> | |
74 <conditional name="sampling_methods"> | |
75 <param name="sampling_method" type="select" label="Neighbor selection method"> | |
76 <option value="KNeighborsClassifier" selected="true">K-nearest neighbors</option> | |
77 <option value="RadiusNeighborsClassifier">Radius-based</option> | |
78 </param> | |
79 <when value="KNeighborsClassifier"> | |
80 <expand macro="nn_advanced_options"> | |
81 <param argument="n_neighbors" type="integer" optional="true" value="5" label="Number of neighbors" help=" "/> | |
82 </expand> | |
83 </when> | |
84 <when value="RadiusNeighborsClassifier"> | |
85 <expand macro="nn_advanced_options"> | |
86 <param argument="radius" type="float" optional="true" value="1.0" label="Radius" | |
87 help="Range of parameter space to use by default for :meth ''radius_neighbors'' queries."/> | |
88 </expand> | |
89 </when> | |
90 </conditional> | |
91 </when> | |
92 <when value="ncentroid"> | |
93 <section name="options" title="Advanced Options" expanded="False"> | |
94 <param argument="metric" type="text" optional="true" value="euclidean" label="Metric" | |
95 help="The metric to use when calculating distance between instances in a feature array."/> | |
96 <param argument="shrink_threshold" type="float" optional="true" value="" label="Shrink threshold" | |
97 help="Floating point number for shrinking centroids to remove features."/> | |
98 </section> | |
99 </when> | |
100 </expand> | |
101 </inputs> | |
102 | |
103 <expand macro="output"/> | |
104 | |
105 <tests> | |
106 <test> | |
107 <param name="infile_train" value="train_set.tabular" ftype="tabular"/> | |
108 <param name="selected_task" value="train"/> | |
109 <param name="selected_algorithm" value="nneighbors"/> | |
110 <param name="sampling_method" value="KNeighborsClassifier" /> | |
111 <param name="algorithm" value="brute" /> | |
112 <output name="outfile_fit" file="nn_model01.txt"/> | |
113 </test> | |
114 <test> | |
115 <param name="infile_train" value="train_set.tabular" ftype="tabular"/> | |
116 <param name="selected_task" value="train"/> | |
117 <param name="selected_algorithm" value=""/> | |
118 <param name="selected_algorithm" value="nneighbors"/> | |
119 <param name="sampling_method" value="RadiusNeighborsClassifier" /> | |
120 <output name="outfile_fit" file="nn_model02.txt"/> | |
121 </test> | |
122 <test> | |
123 <param name="infile_train" value="train_set.tabular" ftype="tabular"/> | |
124 <param name="selected_task" value="train"/> | |
125 <param name="selected_algorithm" value="ncentroid"/> | |
126 <output name="outfile_fit" file="nn_model03.txt"/> | |
127 </test> | |
128 <test> | |
129 <param name="infile_model" value="nn_model01.txt" ftype="txt"/> | |
130 <param name="infile_data" value="test_set.tabular" ftype="tabular"/> | |
131 <param name="selected_task" value="load"/> | |
132 <output name="outfile_predict" file="nn_prediction_result01.tabular"/> | |
133 </test> | |
134 <test> | |
135 <param name="infile_model" value="nn_model02.txt" ftype="txt"/> | |
136 <param name="infile_data" value="test_set.tabular" ftype="tabular"/> | |
137 <param name="selected_task" value="load"/> | |
138 <output name="outfile_predict" file="nn_prediction_result02.tabular"/> | |
139 </test> | |
140 <test> | |
141 <param name="infile_model" value="nn_model03.txt" ftype="txt"/> | |
142 <param name="infile_data" value="test_set.tabular" ftype="tabular"/> | |
143 <param name="selected_task" value="load"/> | |
144 <output name="outfile_predict" file="nn_prediction_result03.tabular"/> | |
145 </test> | |
146 </tests> | |
147 <help><![CDATA[ | |
148 **What it does** | |
149 This module implements the k-nearest neighbors classification algorithms. | |
150 For more information check http://scikit-learn.org/stable/modules/neighbors.html | |
151 ]]></help> | |
152 <expand macro="sklearn_citation"/> | |
153 </tool> |