Mercurial > repos > bgruening > plotly_ml_performance_plots
diff plotly_ml_performance_plots.xml @ 4:f234e2e59d76 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/plotly_ml_performance_plots commit daa111fcd8391d451aab39110251864fd120edf0
author | bgruening |
---|---|
date | Wed, 07 Aug 2024 10:20:17 +0000 |
parents | 1c5dcef5ce0f |
children |
line wrap: on
line diff
--- a/plotly_ml_performance_plots.xml Tue May 07 14:11:16 2024 +0000 +++ b/plotly_ml_performance_plots.xml Wed Aug 07 10:20:17 2024 +0000 @@ -1,4 +1,4 @@ -<tool id="plotly_ml_performance_plots" name="Plot confusion matrix, precision, recall and ROC and AUC curves" version="0.3" profile="22.05"> +<tool id="plotly_ml_performance_plots" name="Plot confusion matrix, precision, recall and ROC and AUC curves" version="0.4" profile="22.05"> <description>of tabular data</description> <requirements> <requirement type="package" version="0.10.0">galaxy-ml</requirement> @@ -18,7 +18,7 @@ </inputs> <outputs> - <data name="output_confusion" format="html" from_work_dir="output_confusion.html" label="Confusion matrix of tabular data on ${on_string}"/> + <data name="output_confusion" format="png" from_work_dir="output_confusion.png" label="Confusion matrix of tabular data on ${on_string}"/> <data name="output_prf" format="html" from_work_dir="output_prf.html" label="Precision, recall and f-score of tabular data on ${on_string}"/> <data name="output_roc" format="html" from_work_dir="output_roc.html" label="ROC and AUC curves of tabular data on ${on_string}"/> </outputs> @@ -30,8 +30,7 @@ <param name="infile_trained_model" value="model_binary_sgd.h5mlm" ftype="h5mlm"/> <output name="output_confusion"> <assert_contents> - <has_size value="3486809" delta="10000" /> - <has_text text="html" /> + <has_size value="31751" delta="1000" /> </assert_contents> </output> <output name="output_prf"> @@ -47,8 +46,7 @@ <param name="infile_trained_model" value="model_binary_linearsvm.h5mlm" ftype="h5mlm"/> <output name="output_confusion"> <assert_contents> - <has_size value="3486810" delta="10000" /> - <has_text text="html" /> + <has_size value="31983" delta="1000" /> </assert_contents> </output> <output name="output_prf"> @@ -70,8 +68,7 @@ <param name="infile_trained_model" value="model_binary_rfc.h5mlm" ftype="h5mlm"/> <output name="output_confusion"> <assert_contents> - <has_size value="3486806" delta="10000" /> - <has_text text="html" /> + <has_size value="34096" delta="1000" /> </assert_contents> </output> <output name="output_prf"> @@ -93,8 +90,7 @@ <param name="infile_trained_model" value="model_binary_knn.h5mlm" ftype="h5mlm"/> <output name="output_confusion"> <assert_contents> - <has_size value="3486856" delta="10000" /> - <has_text text="html" /> + <has_size value="32398" delta="1000" /> </assert_contents> </output> <output name="output_prf"> @@ -116,8 +112,7 @@ <param name="infile_trained_model" value="model_multi_lr.h5mlm" ftype="h5mlm"/> <output name="output_confusion"> <assert_contents> - <has_size value="3486832" delta="10000" /> - <has_text text="html" /> + <has_size value="34474" delta="1000" /> </assert_contents> </output> <output name="output_prf">