Mercurial > repos > bgruening > plotly_ml_performance_plots
view plot_ml_performance.py @ 0:4fac53da862f draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/plotly_ml_performance_plots commit 8496ba724e35ba551172ea975b0fed091d4bbe88
author | bgruening |
---|---|
date | Thu, 11 Oct 2018 14:37:54 -0400 |
parents | |
children | 85da91bbdbfb |
line wrap: on
line source
import argparse import pandas as pd import plotly import pickle import plotly.graph_objs as go from sklearn.metrics import confusion_matrix, precision_recall_fscore_support, roc_curve, auc from sklearn.preprocessing import label_binarize def main(infile_input, infile_output, infile_trained_model): """ Produce an interactive confusion matrix (heatmap), precision, recall, fscore and auc plots Args: infile_input: str, input tabular file with true labels infile_output: str, input tabular file with predicted labels infile_trained_model: str, input trained model file (zip) """ df_input = pd.read_csv(infile_input, sep='\t', parse_dates=True) df_output = pd.read_csv(infile_output, sep='\t', parse_dates=True) true_labels = df_input.iloc[:, -1].copy() predicted_labels = df_output.iloc[:, -1].copy() axis_labels = list(set(true_labels)) c_matrix = confusion_matrix(true_labels, predicted_labels) data = [ go.Heatmap( z=c_matrix, x=axis_labels, y=axis_labels, colorscale='Portland', ) ] layout = go.Layout( title='Confusion Matrix between true and predicted class labels', xaxis=dict(title='True class labels'), yaxis=dict(title='Predicted class labels') ) fig = go.Figure(data=data, layout=layout) plotly.offline.plot(fig, filename="output_confusion.html", auto_open=False) # plot precision, recall and f_score for each class label precision, recall, f_score, _ = precision_recall_fscore_support(true_labels, predicted_labels) trace_precision = go.Scatter( x=axis_labels, y=precision, mode='lines+markers', name='Precision' ) trace_recall = go.Scatter( x=axis_labels, y=recall, mode='lines+markers', name='Recall' ) trace_fscore = go.Scatter( x=axis_labels, y=f_score, mode='lines+markers', name='F-score' ) layout_prf = go.Layout( title='Precision, recall and f-score of true and predicted class labels', xaxis=dict(title='Class labels'), yaxis=dict(title='Precision, recall and f-score') ) data_prf = [trace_precision, trace_recall, trace_fscore] fig_prf = go.Figure(data=data_prf, layout=layout_prf) plotly.offline.plot(fig_prf, filename="output_prf.html", auto_open=False) # plot roc and auc curves for different classes with open(infile_trained_model, 'rb') as model_file: model = pickle.load(model_file) # remove the last column (label column) test_data = df_input.iloc[:, :-1] model_items = dir(model) try: # find the probability estimating method if 'predict_proba' in model_items: y_score = model.predict_proba(test_data) elif 'decision_function' in model_items: y_score = model.decision_function(test_data) true_labels_list = true_labels.tolist() one_hot_labels = label_binarize(true_labels_list, classes=axis_labels) data_roc = list() if len(axis_labels) > 2: fpr = dict() tpr = dict() roc_auc = dict() for i in axis_labels: fpr[i], tpr[i], _ = roc_curve(one_hot_labels[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) for i in range(len(axis_labels)): trace = go.Scatter( x=fpr[i], y=tpr[i], mode='lines+markers', name='ROC curve of class {0} (AUC = {1:0.2f})'.format(i, roc_auc[i]) ) data_roc.append(trace) else: try: y_score_binary = y_score[:, 1] except: y_score_binary = y_score fpr, tpr, _ = roc_curve(one_hot_labels, y_score_binary, pos_label=1) roc_auc = auc(fpr, tpr) trace = go.Scatter( x=fpr, y=tpr, mode='lines+markers', name='ROC curve (AUC = {0:0.2f})'.format(roc_auc) ) data_roc.append(trace) trace_diag = go.Scatter( x=[0, 1], y=[0, 1], mode='lines', name='Chance' ) data_roc.append(trace_diag) layout_roc = go.Layout( title='Receiver operating characteristics (ROC) and area under curve (AUC)', xaxis=dict(title='False positive rate'), yaxis=dict(title='True positive rate') ) fig_roc = go.Figure(data=data_roc, layout=layout_roc) plotly.offline.plot(fig_roc, filename="output_roc.html", auto_open=False) except Exception as exp: pass if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--input", dest="infile_input", required=True) aparser.add_argument("-j", "--output", dest="infile_output", required=True) aparser.add_argument("-k", "--model", dest="infile_trained_model", required=True) args = aparser.parse_args() main(args.infile_input, args.infile_output, args.infile_trained_model)