Mercurial > repos > bgruening > plotly_ml_performance_plots
view plot_ml_performance.py @ 4:f234e2e59d76 draft default tip
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/plotly_ml_performance_plots commit daa111fcd8391d451aab39110251864fd120edf0
author | bgruening |
---|---|
date | Wed, 07 Aug 2024 10:20:17 +0000 |
parents | 1c5dcef5ce0f |
children |
line wrap: on
line source
import argparse import matplotlib.pyplot as plt import pandas as pd import plotly import plotly.graph_objs as go from galaxy_ml.model_persist import load_model_from_h5 from galaxy_ml.utils import clean_params from sklearn.metrics import ( auc, confusion_matrix, precision_recall_fscore_support, roc_curve, ) from sklearn.preprocessing import label_binarize def main(infile_input, infile_output, infile_trained_model): """ Produce an interactive confusion matrix (heatmap), precision, recall, fscore and auc plots Args: infile_input: str, input tabular file with true labels infile_output: str, input tabular file with predicted labels infile_trained_model: str, input trained model file (h5mlm) """ df_input = pd.read_csv(infile_input, sep="\t", parse_dates=True) df_output = pd.read_csv(infile_output, sep="\t", parse_dates=True) true_labels = df_input.iloc[:, -1].copy() predicted_labels = df_output.iloc[:, -1].copy() axis_labels = list(set(true_labels)) c_matrix = confusion_matrix(true_labels, predicted_labels) fig, ax = plt.subplots(figsize=(7, 7)) im = plt.imshow(c_matrix, cmap="viridis") # add number of samples to each cell of confusion matrix plot for i in range(len(c_matrix)): for j in range(len(c_matrix)): ax.text(j, i, c_matrix[i, j], ha="center", va="center", color="k") ax.set_ylabel("True class labels") ax.set_xlabel("Predicted class labels") ax.set_title("Confusion Matrix between true and predicted class labels") ax.set_xticks(axis_labels) ax.set_yticks(axis_labels) fig.colorbar(im, ax=ax) fig.tight_layout() plt.savefig("output_confusion.png", dpi=120) # plot precision, recall and f_score for each class label precision, recall, f_score, _ = precision_recall_fscore_support( true_labels, predicted_labels ) trace_precision = go.Scatter( x=axis_labels, y=precision, mode="lines+markers", name="Precision" ) trace_recall = go.Scatter( x=axis_labels, y=recall, mode="lines+markers", name="Recall" ) trace_fscore = go.Scatter( x=axis_labels, y=f_score, mode="lines+markers", name="F-score" ) layout_prf = go.Layout( title="Precision, recall and f-score of true and predicted class labels", xaxis=dict(title="Class labels"), yaxis=dict(title="Precision, recall and f-score"), ) data_prf = [trace_precision, trace_recall, trace_fscore] fig_prf = go.Figure(data=data_prf, layout=layout_prf) plotly.offline.plot(fig_prf, filename="output_prf.html", auto_open=False) # plot roc and auc curves for different classes classifier_object = load_model_from_h5(infile_trained_model) model = clean_params(classifier_object) # remove the last column (label column) test_data = df_input.iloc[:, :-1] model_items = dir(model) try: # find the probability estimating method if "predict_proba" in model_items: y_score = model.predict_proba(test_data) elif "decision_function" in model_items: y_score = model.decision_function(test_data) true_labels_list = true_labels.tolist() one_hot_labels = label_binarize(true_labels_list, classes=axis_labels) data_roc = list() if len(axis_labels) > 2: fpr = dict() tpr = dict() roc_auc = dict() for i in axis_labels: fpr[i], tpr[i], _ = roc_curve(one_hot_labels[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) for i in range(len(axis_labels)): trace = go.Scatter( x=fpr[i], y=tpr[i], mode="lines+markers", name="ROC curve of class {0} (AUC = {1:0.2f})".format( i, roc_auc[i] ), ) data_roc.append(trace) else: try: y_score_binary = y_score[:, 1] except Exception: y_score_binary = y_score fpr, tpr, _ = roc_curve(one_hot_labels, y_score_binary, pos_label=1) roc_auc = auc(fpr, tpr) trace = go.Scatter( x=fpr, y=tpr, mode="lines+markers", name="ROC curve (AUC = {0:0.2f})".format(roc_auc), ) data_roc.append(trace) trace_diag = go.Scatter(x=[0, 1], y=[0, 1], mode="lines", name="Chance") data_roc.append(trace_diag) layout_roc = go.Layout( title="Receiver operating characteristics (ROC) and area under curve (AUC)", xaxis=dict(title="False positive rate"), yaxis=dict(title="True positive rate"), ) fig_roc = go.Figure(data=data_roc, layout=layout_roc) plotly.offline.plot(fig_roc, filename="output_roc.html", auto_open=False) except Exception as exp: print( "Plotting the ROC-AUC graph failed. This exception was raised: {}".format( exp ) ) if __name__ == "__main__": aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--input", dest="infile_input", required=True) aparser.add_argument("-j", "--output", dest="infile_output", required=True) aparser.add_argument("-k", "--model", dest="infile_trained_model", required=True) args = aparser.parse_args() main(args.infile_input, args.infile_output, args.infile_trained_model)