Mercurial > repos > bgruening > scipy_sparse
view search_model_validation.py @ 23:27c0b1a050df draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 57f4407e278a615f47a377a3328782b1d8e0b54d
author | bgruening |
---|---|
date | Sun, 30 Dec 2018 02:03:13 -0500 |
parents | |
children | b9ed7b774ba3 |
line wrap: on
line source
import imblearn import json import numpy as np import os import pandas import pickle import skrebate import sklearn import sys import xgboost import warnings from imblearn import under_sampling, over_sampling, combine from imblearn.pipeline import Pipeline as imbPipeline from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) from sklearn.exceptions import FitFailedWarning from sklearn.externals import joblib from utils import get_cv, get_scoring, get_X_y, load_model, read_columns, SafeEval N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) def get_search_params(params_builder): search_params = {} safe_eval = SafeEval(load_scipy=True, load_numpy=True) safe_eval_es = SafeEval(load_estimators=True) for p in params_builder['param_set']: search_p = p['search_param_selector']['search_p'] if search_p.strip() == '': continue param_type = p['search_param_selector']['selected_param_type'] lst = search_p.split(':') assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." literal = lst[1].strip() param_name = lst[0].strip() if param_name: if param_name.lower() == 'n_jobs': sys.exit("Parameter `%s` is invalid for search." %param_name) elif not param_name.endswith('-'): ev = safe_eval(literal) if param_type == 'final_estimator_p': search_params['estimator__' + param_name] = ev else: search_params['preprocessing_' + param_type[5:6] + '__' + param_name] = ev else: # only for estimator eval, add `-` to the end of param #TODO maybe add regular express check ev = safe_eval_es(literal) for obj in ev: if 'n_jobs' in obj.get_params(): obj.set_params( n_jobs=N_JOBS ) if param_type == 'final_estimator_p': search_params['estimator__' + param_name[:-1]] = ev else: search_params['preprocessing_' + param_type[5:6] + '__' + param_name[:-1]] = ev elif param_type != 'final_estimator_p': #TODO regular express check ? ev = safe_eval_es(literal) preprocessors = [preprocessing.StandardScaler(), preprocessing.Binarizer(), preprocessing.Imputer(), preprocessing.MaxAbsScaler(), preprocessing.Normalizer(), preprocessing.MinMaxScaler(), preprocessing.PolynomialFeatures(),preprocessing.RobustScaler(), feature_selection.SelectKBest(), feature_selection.GenericUnivariateSelect(), feature_selection.SelectPercentile(), feature_selection.SelectFpr(), feature_selection.SelectFdr(), feature_selection.SelectFwe(), feature_selection.VarianceThreshold(), decomposition.FactorAnalysis(random_state=0), decomposition.FastICA(random_state=0), decomposition.IncrementalPCA(), decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.NMF(random_state=0), decomposition.PCA(random_state=0), decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.TruncatedSVD(random_state=0), kernel_approximation.Nystroem(random_state=0), kernel_approximation.RBFSampler(random_state=0), kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.SkewedChi2Sampler(random_state=0), cluster.FeatureAgglomeration(), skrebate.ReliefF(n_jobs=N_JOBS), skrebate.SURF(n_jobs=N_JOBS), skrebate.SURFstar(n_jobs=N_JOBS), skrebate.MultiSURF(n_jobs=N_JOBS), skrebate.MultiSURFstar(n_jobs=N_JOBS), imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), imblearn.under_sampling.RandomUnderSampler(random_state=0), imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.RandomOverSampler(random_state=0), imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), imblearn.combine.SMOTEENN(random_state=0), imblearn.combine.SMOTETomek(random_state=0)] newlist = [] for obj in ev: if obj is None: newlist.append(None) elif obj == 'all_0': newlist.extend(preprocessors[0:36]) elif obj == 'sk_prep_all': # no KernalCenter() newlist.extend(preprocessors[0:8]) elif obj == 'fs_all': newlist.extend(preprocessors[8:15]) elif obj == 'decomp_all': newlist.extend(preprocessors[15:26]) elif obj == 'k_appr_all': newlist.extend(preprocessors[26:30]) elif obj == 'reb_all': newlist.extend(preprocessors[31:36]) elif obj == 'imb_all': newlist.extend(preprocessors[36:55]) elif type(obj) is int and -1 < obj < len(preprocessors): newlist.append(preprocessors[obj]) elif hasattr(obj, 'get_params'): # user object if 'n_jobs' in obj.get_params(): newlist.append( obj.set_params(n_jobs=N_JOBS) ) else: newlist.append(obj) else: sys.exit("Unsupported preprocessor type: %r" %(obj)) search_params['preprocessing_' + param_type[5:6]] = newlist else: sys.exit("Parameter name of the final estimator can't be skipped!") return search_params if __name__ == '__main__': warnings.simplefilter('ignore') input_json_path = sys.argv[1] with open(input_json_path, 'r') as param_handler: params = json.load(param_handler) infile_pipeline = sys.argv[2] infile1 = sys.argv[3] infile2 = sys.argv[4] outfile_result = sys.argv[5] if len(sys.argv) > 6: outfile_estimator = sys.argv[6] else: outfile_estimator = None params_builder = params['search_schemes']['search_params_builder'] input_type = params['input_options']['selected_input'] if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None X = read_columns( infile1, c = c, c_option = column_option, sep='\t', header=header, parse_dates=True ) else: X = mmread(open(infile1, 'r')) header = 'infer' if params['input_options']['header2'] else None column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_2']['col2'] else: c = None y = read_columns( infile2, c = c, c_option = column_option, sep='\t', header=header, parse_dates=True ) y = y.ravel() optimizer = params['search_schemes']['selected_search_scheme'] optimizer = getattr(model_selection, optimizer) options = params['search_schemes']['options'] splitter, groups = get_cv(options.pop('cv_selector')) if groups is None: options['cv'] = splitter elif groups == '': options['cv'] = list( splitter.split(X, y, groups=None) ) else: options['cv'] = list( splitter.split(X, y, groups=groups) ) options['n_jobs'] = N_JOBS primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) if options['error_score']: options['error_score'] = 'raise' else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): options['refit'] = 'primary' if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None with open(infile_pipeline, 'rb') as pipeline_handler: pipeline = load_model(pipeline_handler) search_params = get_search_params(params_builder) searcher = optimizer(pipeline, search_params, **options) if options['error_score'] == 'raise': searcher.fit(X, y) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: searcher.fit(X, y) except ValueError: pass for warning in w: print(repr(warning.message)) cv_result = pandas.DataFrame(searcher.cv_results_) cv_result.rename(inplace=True, columns={'mean_test_primary': 'mean_test_'+primary_scoring, 'rank_test_primary': 'rank_test_'+primary_scoring}) cv_result.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) if outfile_estimator: with open(outfile_estimator, 'wb') as output_handler: pickle.dump(searcher.best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL)