Mercurial > repos > bgruening > sklearn_clf_metrics
comparison train_test_eval.py @ 26:44f0ce9488fb draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
| author | bgruening |
|---|---|
| date | Fri, 09 Aug 2019 07:22:24 -0400 |
| parents | |
| children | 5a21a631d2eb |
comparison
equal
deleted
inserted
replaced
| 25:68afcd163b3d | 26:44f0ce9488fb |
|---|---|
| 1 import argparse | |
| 2 import joblib | |
| 3 import json | |
| 4 import numpy as np | |
| 5 import pandas as pd | |
| 6 import pickle | |
| 7 import warnings | |
| 8 from itertools import chain | |
| 9 from scipy.io import mmread | |
| 10 from sklearn.base import clone | |
| 11 from sklearn import (cluster, compose, decomposition, ensemble, | |
| 12 feature_extraction, feature_selection, | |
| 13 gaussian_process, kernel_approximation, metrics, | |
| 14 model_selection, naive_bayes, neighbors, | |
| 15 pipeline, preprocessing, svm, linear_model, | |
| 16 tree, discriminant_analysis) | |
| 17 from sklearn.exceptions import FitFailedWarning | |
| 18 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 19 from sklearn.model_selection._validation import _score, cross_validate | |
| 20 from sklearn.model_selection import _search, _validation | |
| 21 from sklearn.utils import indexable, safe_indexing | |
| 22 | |
| 23 from galaxy_ml.model_validations import train_test_split | |
| 24 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | |
| 25 read_columns, try_get_attr, get_module) | |
| 26 | |
| 27 | |
| 28 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
| 29 setattr(_search, '_fit_and_score', _fit_and_score) | |
| 30 setattr(_validation, '_fit_and_score', _fit_and_score) | |
| 31 | |
| 32 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 33 CACHE_DIR = './cached' | |
| 34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
| 35 'nthread', 'callbacks') | |
| 36 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
| 37 'CSVLogger', 'None') | |
| 38 | |
| 39 | |
| 40 def _eval_swap_params(params_builder): | |
| 41 swap_params = {} | |
| 42 | |
| 43 for p in params_builder['param_set']: | |
| 44 swap_value = p['sp_value'].strip() | |
| 45 if swap_value == '': | |
| 46 continue | |
| 47 | |
| 48 param_name = p['sp_name'] | |
| 49 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 50 warnings.warn("Warning: `%s` is not eligible for search and was " | |
| 51 "omitted!" % param_name) | |
| 52 continue | |
| 53 | |
| 54 if not swap_value.startswith(':'): | |
| 55 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 56 ev = safe_eval(swap_value) | |
| 57 else: | |
| 58 # Have `:` before search list, asks for estimator evaluatio | |
| 59 safe_eval_es = SafeEval(load_estimators=True) | |
| 60 swap_value = swap_value[1:].strip() | |
| 61 # TODO maybe add regular express check | |
| 62 ev = safe_eval_es(swap_value) | |
| 63 | |
| 64 swap_params[param_name] = ev | |
| 65 | |
| 66 return swap_params | |
| 67 | |
| 68 | |
| 69 def train_test_split_none(*arrays, **kwargs): | |
| 70 """extend train_test_split to take None arrays | |
| 71 and support split by group names. | |
| 72 """ | |
| 73 nones = [] | |
| 74 new_arrays = [] | |
| 75 for idx, arr in enumerate(arrays): | |
| 76 if arr is None: | |
| 77 nones.append(idx) | |
| 78 else: | |
| 79 new_arrays.append(arr) | |
| 80 | |
| 81 if kwargs['shuffle'] == 'None': | |
| 82 kwargs['shuffle'] = None | |
| 83 | |
| 84 group_names = kwargs.pop('group_names', None) | |
| 85 | |
| 86 if group_names is not None and group_names.strip(): | |
| 87 group_names = [name.strip() for name in | |
| 88 group_names.split(',')] | |
| 89 new_arrays = indexable(*new_arrays) | |
| 90 groups = kwargs['labels'] | |
| 91 n_samples = new_arrays[0].shape[0] | |
| 92 index_arr = np.arange(n_samples) | |
| 93 test = index_arr[np.isin(groups, group_names)] | |
| 94 train = index_arr[~np.isin(groups, group_names)] | |
| 95 rval = list(chain.from_iterable( | |
| 96 (safe_indexing(a, train), | |
| 97 safe_indexing(a, test)) for a in new_arrays)) | |
| 98 else: | |
| 99 rval = train_test_split(*new_arrays, **kwargs) | |
| 100 | |
| 101 for pos in nones: | |
| 102 rval[pos * 2: 2] = [None, None] | |
| 103 | |
| 104 return rval | |
| 105 | |
| 106 | |
| 107 def main(inputs, infile_estimator, infile1, infile2, | |
| 108 outfile_result, outfile_object=None, | |
| 109 outfile_weights=None, groups=None, | |
| 110 ref_seq=None, intervals=None, targets=None, | |
| 111 fasta_path=None): | |
| 112 """ | |
| 113 Parameter | |
| 114 --------- | |
| 115 inputs : str | |
| 116 File path to galaxy tool parameter | |
| 117 | |
| 118 infile_estimator : str | |
| 119 File path to estimator | |
| 120 | |
| 121 infile1 : str | |
| 122 File path to dataset containing features | |
| 123 | |
| 124 infile2 : str | |
| 125 File path to dataset containing target values | |
| 126 | |
| 127 outfile_result : str | |
| 128 File path to save the results, either cv_results or test result | |
| 129 | |
| 130 outfile_object : str, optional | |
| 131 File path to save searchCV object | |
| 132 | |
| 133 outfile_weights : str, optional | |
| 134 File path to save deep learning model weights | |
| 135 | |
| 136 groups : str | |
| 137 File path to dataset containing groups labels | |
| 138 | |
| 139 ref_seq : str | |
| 140 File path to dataset containing genome sequence file | |
| 141 | |
| 142 intervals : str | |
| 143 File path to dataset containing interval file | |
| 144 | |
| 145 targets : str | |
| 146 File path to dataset compressed target bed file | |
| 147 | |
| 148 fasta_path : str | |
| 149 File path to dataset containing fasta file | |
| 150 """ | |
| 151 warnings.simplefilter('ignore') | |
| 152 | |
| 153 with open(inputs, 'r') as param_handler: | |
| 154 params = json.load(param_handler) | |
| 155 | |
| 156 # load estimator | |
| 157 with open(infile_estimator, 'rb') as estimator_handler: | |
| 158 estimator = load_model(estimator_handler) | |
| 159 | |
| 160 # swap hyperparameter | |
| 161 swapping = params['experiment_schemes']['hyperparams_swapping'] | |
| 162 swap_params = _eval_swap_params(swapping) | |
| 163 estimator.set_params(**swap_params) | |
| 164 | |
| 165 estimator_params = estimator.get_params() | |
| 166 | |
| 167 # store read dataframe object | |
| 168 loaded_df = {} | |
| 169 | |
| 170 input_type = params['input_options']['selected_input'] | |
| 171 # tabular input | |
| 172 if input_type == 'tabular': | |
| 173 header = 'infer' if params['input_options']['header1'] else None | |
| 174 column_option = (params['input_options']['column_selector_options_1'] | |
| 175 ['selected_column_selector_option']) | |
| 176 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 177 'by_header_name', 'all_but_by_header_name']: | |
| 178 c = params['input_options']['column_selector_options_1']['col1'] | |
| 179 else: | |
| 180 c = None | |
| 181 | |
| 182 df_key = infile1 + repr(header) | |
| 183 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 184 parse_dates=True) | |
| 185 loaded_df[df_key] = df | |
| 186 | |
| 187 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 188 # sparse input | |
| 189 elif input_type == 'sparse': | |
| 190 X = mmread(open(infile1, 'r')) | |
| 191 | |
| 192 # fasta_file input | |
| 193 elif input_type == 'seq_fasta': | |
| 194 pyfaidx = get_module('pyfaidx') | |
| 195 sequences = pyfaidx.Fasta(fasta_path) | |
| 196 n_seqs = len(sequences.keys()) | |
| 197 X = np.arange(n_seqs)[:, np.newaxis] | |
| 198 for param in estimator_params.keys(): | |
| 199 if param.endswith('fasta_path'): | |
| 200 estimator.set_params( | |
| 201 **{param: fasta_path}) | |
| 202 break | |
| 203 else: | |
| 204 raise ValueError( | |
| 205 "The selected estimator doesn't support " | |
| 206 "fasta file input! Please consider using " | |
| 207 "KerasGBatchClassifier with " | |
| 208 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 209 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 210 "in pipeline!") | |
| 211 | |
| 212 elif input_type == 'refseq_and_interval': | |
| 213 path_params = { | |
| 214 'data_batch_generator__ref_genome_path': ref_seq, | |
| 215 'data_batch_generator__intervals_path': intervals, | |
| 216 'data_batch_generator__target_path': targets | |
| 217 } | |
| 218 estimator.set_params(**path_params) | |
| 219 n_intervals = sum(1 for line in open(intervals)) | |
| 220 X = np.arange(n_intervals)[:, np.newaxis] | |
| 221 | |
| 222 # Get target y | |
| 223 header = 'infer' if params['input_options']['header2'] else None | |
| 224 column_option = (params['input_options']['column_selector_options_2'] | |
| 225 ['selected_column_selector_option2']) | |
| 226 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 227 'by_header_name', 'all_but_by_header_name']: | |
| 228 c = params['input_options']['column_selector_options_2']['col2'] | |
| 229 else: | |
| 230 c = None | |
| 231 | |
| 232 df_key = infile2 + repr(header) | |
| 233 if df_key in loaded_df: | |
| 234 infile2 = loaded_df[df_key] | |
| 235 else: | |
| 236 infile2 = pd.read_csv(infile2, sep='\t', | |
| 237 header=header, parse_dates=True) | |
| 238 loaded_df[df_key] = infile2 | |
| 239 | |
| 240 y = read_columns( | |
| 241 infile2, | |
| 242 c=c, | |
| 243 c_option=column_option, | |
| 244 sep='\t', | |
| 245 header=header, | |
| 246 parse_dates=True) | |
| 247 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 248 y = y.ravel() | |
| 249 if input_type == 'refseq_and_interval': | |
| 250 estimator.set_params( | |
| 251 data_batch_generator__features=y.ravel().tolist()) | |
| 252 y = None | |
| 253 # end y | |
| 254 | |
| 255 # load groups | |
| 256 if groups: | |
| 257 groups_selector = (params['experiment_schemes']['test_split'] | |
| 258 ['split_algos']).pop('groups_selector') | |
| 259 | |
| 260 header = 'infer' if groups_selector['header_g'] else None | |
| 261 column_option = \ | |
| 262 (groups_selector['column_selector_options_g'] | |
| 263 ['selected_column_selector_option_g']) | |
| 264 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 265 'by_header_name', 'all_but_by_header_name']: | |
| 266 c = groups_selector['column_selector_options_g']['col_g'] | |
| 267 else: | |
| 268 c = None | |
| 269 | |
| 270 df_key = groups + repr(header) | |
| 271 if df_key in loaded_df: | |
| 272 groups = loaded_df[df_key] | |
| 273 | |
| 274 groups = read_columns( | |
| 275 groups, | |
| 276 c=c, | |
| 277 c_option=column_option, | |
| 278 sep='\t', | |
| 279 header=header, | |
| 280 parse_dates=True) | |
| 281 groups = groups.ravel() | |
| 282 | |
| 283 # del loaded_df | |
| 284 del loaded_df | |
| 285 | |
| 286 # handle memory | |
| 287 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 288 # cache iraps_core fits could increase search speed significantly | |
| 289 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
| 290 estimator.set_params(memory=memory) | |
| 291 else: | |
| 292 # For iraps buried in pipeline | |
| 293 new_params = {} | |
| 294 for p, v in estimator_params.items(): | |
| 295 if p.endswith('memory'): | |
| 296 # for case of `__irapsclassifier__memory` | |
| 297 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
| 298 # cache iraps_core fits could increase search | |
| 299 # speed significantly | |
| 300 new_params[p] = memory | |
| 301 # security reason, we don't want memory being | |
| 302 # modified unexpectedly | |
| 303 elif v: | |
| 304 new_params[p] = None | |
| 305 # handle n_jobs | |
| 306 elif p.endswith('n_jobs'): | |
| 307 # For now, 1 CPU is suggested for iprasclassifier | |
| 308 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
| 309 new_params[p] = 1 | |
| 310 else: | |
| 311 new_params[p] = N_JOBS | |
| 312 # for security reason, types of callback are limited | |
| 313 elif p.endswith('callbacks'): | |
| 314 for cb in v: | |
| 315 cb_type = cb['callback_selection']['callback_type'] | |
| 316 if cb_type not in ALLOWED_CALLBACKS: | |
| 317 raise ValueError( | |
| 318 "Prohibited callback type: %s!" % cb_type) | |
| 319 | |
| 320 estimator.set_params(**new_params) | |
| 321 | |
| 322 # handle scorer, convert to scorer dict | |
| 323 scoring = params['experiment_schemes']['metrics']['scoring'] | |
| 324 scorer = get_scoring(scoring) | |
| 325 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
| 326 | |
| 327 # handle test (first) split | |
| 328 test_split_options = (params['experiment_schemes'] | |
| 329 ['test_split']['split_algos']) | |
| 330 | |
| 331 if test_split_options['shuffle'] == 'group': | |
| 332 test_split_options['labels'] = groups | |
| 333 if test_split_options['shuffle'] == 'stratified': | |
| 334 if y is not None: | |
| 335 test_split_options['labels'] = y | |
| 336 else: | |
| 337 raise ValueError("Stratified shuffle split is not " | |
| 338 "applicable on empty target values!") | |
| 339 | |
| 340 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | |
| 341 train_test_split_none(X, y, groups, **test_split_options) | |
| 342 | |
| 343 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | |
| 344 | |
| 345 # handle validation (second) split | |
| 346 if exp_scheme == 'train_val_test': | |
| 347 val_split_options = (params['experiment_schemes'] | |
| 348 ['val_split']['split_algos']) | |
| 349 | |
| 350 if val_split_options['shuffle'] == 'group': | |
| 351 val_split_options['labels'] = groups_train | |
| 352 if val_split_options['shuffle'] == 'stratified': | |
| 353 if y_train is not None: | |
| 354 val_split_options['labels'] = y_train | |
| 355 else: | |
| 356 raise ValueError("Stratified shuffle split is not " | |
| 357 "applicable on empty target values!") | |
| 358 | |
| 359 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | |
| 360 train_test_split_none(X_train, y_train, groups_train, | |
| 361 **val_split_options) | |
| 362 | |
| 363 # train and eval | |
| 364 if hasattr(estimator, 'validation_data'): | |
| 365 if exp_scheme == 'train_val_test': | |
| 366 estimator.fit(X_train, y_train, | |
| 367 validation_data=(X_val, y_val)) | |
| 368 else: | |
| 369 estimator.fit(X_train, y_train, | |
| 370 validation_data=(X_test, y_test)) | |
| 371 else: | |
| 372 estimator.fit(X_train, y_train) | |
| 373 | |
| 374 if hasattr(estimator, 'evaluate'): | |
| 375 scores = estimator.evaluate(X_test, y_test=y_test, | |
| 376 scorer=scorer, | |
| 377 is_multimetric=True) | |
| 378 else: | |
| 379 scores = _score(estimator, X_test, y_test, scorer, | |
| 380 is_multimetric=True) | |
| 381 # handle output | |
| 382 for name, score in scores.items(): | |
| 383 scores[name] = [score] | |
| 384 df = pd.DataFrame(scores) | |
| 385 df = df[sorted(df.columns)] | |
| 386 df.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 387 header=True, index=False) | |
| 388 | |
| 389 memory.clear(warn=False) | |
| 390 | |
| 391 if outfile_object: | |
| 392 main_est = estimator | |
| 393 if isinstance(estimator, pipeline.Pipeline): | |
| 394 main_est = estimator.steps[-1][-1] | |
| 395 | |
| 396 if hasattr(main_est, 'model_') \ | |
| 397 and hasattr(main_est, 'save_weights'): | |
| 398 if outfile_weights: | |
| 399 main_est.save_weights(outfile_weights) | |
| 400 del main_est.model_ | |
| 401 del main_est.fit_params | |
| 402 del main_est.model_class_ | |
| 403 del main_est.validation_data | |
| 404 if getattr(main_est, 'data_generator_', None): | |
| 405 del main_est.data_generator_ | |
| 406 del main_est.data_batch_generator | |
| 407 | |
| 408 with open(outfile_object, 'wb') as output_handler: | |
| 409 pickle.dump(estimator, output_handler, | |
| 410 pickle.HIGHEST_PROTOCOL) | |
| 411 | |
| 412 | |
| 413 if __name__ == '__main__': | |
| 414 aparser = argparse.ArgumentParser() | |
| 415 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 416 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 417 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 418 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 419 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 420 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 421 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 422 aparser.add_argument("-g", "--groups", dest="groups") | |
| 423 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 424 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 425 aparser.add_argument("-t", "--targets", dest="targets") | |
| 426 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 427 args = aparser.parse_args() | |
| 428 | |
| 429 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
| 430 args.outfile_result, outfile_object=args.outfile_object, | |
| 431 outfile_weights=args.outfile_weights, groups=args.groups, | |
| 432 ref_seq=args.ref_seq, intervals=args.intervals, | |
| 433 targets=args.targets, fasta_path=args.fasta_path) |
