Mercurial > repos > bgruening > sklearn_data_preprocess
comparison search_model_validation.py @ 35:0e5fcf7ddc75 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 18:53:33 +0000 |
parents | eb79bde99328 |
children | b75cae00f980 |
comparison
equal
deleted
inserted
replaced
34:eb9da067ab26 | 35:0e5fcf7ddc75 |
---|---|
9 import pickle | 9 import pickle |
10 import skrebate | 10 import skrebate |
11 import sys | 11 import sys |
12 import warnings | 12 import warnings |
13 from scipy.io import mmread | 13 from scipy.io import mmread |
14 from sklearn import (cluster, decomposition, feature_selection, | 14 from sklearn import ( |
15 kernel_approximation, model_selection, preprocessing) | 15 cluster, |
16 decomposition, | |
17 feature_selection, | |
18 kernel_approximation, | |
19 model_selection, | |
20 preprocessing, | |
21 ) | |
16 from sklearn.exceptions import FitFailedWarning | 22 from sklearn.exceptions import FitFailedWarning |
17 from sklearn.model_selection._validation import _score, cross_validate | 23 from sklearn.model_selection._validation import _score, cross_validate |
18 from sklearn.model_selection import _search, _validation | 24 from sklearn.model_selection import _search, _validation |
19 from sklearn.pipeline import Pipeline | 25 from sklearn.pipeline import Pipeline |
20 | 26 |
21 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | 27 from galaxy_ml.utils import ( |
22 read_columns, try_get_attr, get_module, | 28 SafeEval, |
23 clean_params, get_main_estimator) | 29 get_cv, |
24 | 30 get_scoring, |
25 | 31 load_model, |
26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | 32 read_columns, |
27 setattr(_search, '_fit_and_score', _fit_and_score) | 33 try_get_attr, |
28 setattr(_validation, '_fit_and_score', _fit_and_score) | 34 get_module, |
29 | 35 clean_params, |
30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | 36 get_main_estimator, |
37 ) | |
38 | |
39 | |
40 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
41 setattr(_search, "_fit_and_score", _fit_and_score) | |
42 setattr(_validation, "_fit_and_score", _fit_and_score) | |
43 | |
44 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
31 # handle disk cache | 45 # handle disk cache |
32 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | 46 CACHE_DIR = os.path.join(os.getcwd(), "cached") |
33 del os | 47 del os |
34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | 48 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") |
35 'nthread', 'callbacks') | |
36 | 49 |
37 | 50 |
38 def _eval_search_params(params_builder): | 51 def _eval_search_params(params_builder): |
39 search_params = {} | 52 search_params = {} |
40 | 53 |
41 for p in params_builder['param_set']: | 54 for p in params_builder["param_set"]: |
42 search_list = p['sp_list'].strip() | 55 search_list = p["sp_list"].strip() |
43 if search_list == '': | 56 if search_list == "": |
44 continue | 57 continue |
45 | 58 |
46 param_name = p['sp_name'] | 59 param_name = p["sp_name"] |
47 if param_name.lower().endswith(NON_SEARCHABLE): | 60 if param_name.lower().endswith(NON_SEARCHABLE): |
48 print("Warning: `%s` is not eligible for search and was " | 61 print("Warning: `%s` is not eligible for search and was " "omitted!" % param_name) |
49 "omitted!" % param_name) | |
50 continue | 62 continue |
51 | 63 |
52 if not search_list.startswith(':'): | 64 if not search_list.startswith(":"): |
53 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | 65 safe_eval = SafeEval(load_scipy=True, load_numpy=True) |
54 ev = safe_eval(search_list) | 66 ev = safe_eval(search_list) |
55 search_params[param_name] = ev | 67 search_params[param_name] = ev |
56 else: | 68 else: |
57 # Have `:` before search list, asks for estimator evaluatio | 69 # Have `:` before search list, asks for estimator evaluatio |
58 safe_eval_es = SafeEval(load_estimators=True) | 70 safe_eval_es = SafeEval(load_estimators=True) |
59 search_list = search_list[1:].strip() | 71 search_list = search_list[1:].strip() |
60 # TODO maybe add regular express check | 72 # TODO maybe add regular express check |
61 ev = safe_eval_es(search_list) | 73 ev = safe_eval_es(search_list) |
62 preprocessings = ( | 74 preprocessings = ( |
63 preprocessing.StandardScaler(), preprocessing.Binarizer(), | 75 preprocessing.StandardScaler(), |
76 preprocessing.Binarizer(), | |
64 preprocessing.MaxAbsScaler(), | 77 preprocessing.MaxAbsScaler(), |
65 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | 78 preprocessing.Normalizer(), |
79 preprocessing.MinMaxScaler(), | |
66 preprocessing.PolynomialFeatures(), | 80 preprocessing.PolynomialFeatures(), |
67 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | 81 preprocessing.RobustScaler(), |
82 feature_selection.SelectKBest(), | |
68 feature_selection.GenericUnivariateSelect(), | 83 feature_selection.GenericUnivariateSelect(), |
69 feature_selection.SelectPercentile(), | 84 feature_selection.SelectPercentile(), |
70 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | 85 feature_selection.SelectFpr(), |
86 feature_selection.SelectFdr(), | |
71 feature_selection.SelectFwe(), | 87 feature_selection.SelectFwe(), |
72 feature_selection.VarianceThreshold(), | 88 feature_selection.VarianceThreshold(), |
73 decomposition.FactorAnalysis(random_state=0), | 89 decomposition.FactorAnalysis(random_state=0), |
74 decomposition.FastICA(random_state=0), | 90 decomposition.FastICA(random_state=0), |
75 decomposition.IncrementalPCA(), | 91 decomposition.IncrementalPCA(), |
76 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | 92 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), |
77 decomposition.LatentDirichletAllocation( | 93 decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), |
78 random_state=0, n_jobs=N_JOBS), | 94 decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), |
79 decomposition.MiniBatchDictionaryLearning( | 95 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), |
80 random_state=0, n_jobs=N_JOBS), | |
81 decomposition.MiniBatchSparsePCA( | |
82 random_state=0, n_jobs=N_JOBS), | |
83 decomposition.NMF(random_state=0), | 96 decomposition.NMF(random_state=0), |
84 decomposition.PCA(random_state=0), | 97 decomposition.PCA(random_state=0), |
85 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | 98 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), |
86 decomposition.TruncatedSVD(random_state=0), | 99 decomposition.TruncatedSVD(random_state=0), |
87 kernel_approximation.Nystroem(random_state=0), | 100 kernel_approximation.Nystroem(random_state=0), |
92 skrebate.ReliefF(n_jobs=N_JOBS), | 105 skrebate.ReliefF(n_jobs=N_JOBS), |
93 skrebate.SURF(n_jobs=N_JOBS), | 106 skrebate.SURF(n_jobs=N_JOBS), |
94 skrebate.SURFstar(n_jobs=N_JOBS), | 107 skrebate.SURFstar(n_jobs=N_JOBS), |
95 skrebate.MultiSURF(n_jobs=N_JOBS), | 108 skrebate.MultiSURF(n_jobs=N_JOBS), |
96 skrebate.MultiSURFstar(n_jobs=N_JOBS), | 109 skrebate.MultiSURFstar(n_jobs=N_JOBS), |
97 imblearn.under_sampling.ClusterCentroids( | 110 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), |
98 random_state=0, n_jobs=N_JOBS), | 111 imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), |
99 imblearn.under_sampling.CondensedNearestNeighbour( | 112 imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), |
100 random_state=0, n_jobs=N_JOBS), | 113 imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), |
101 imblearn.under_sampling.EditedNearestNeighbours( | |
102 random_state=0, n_jobs=N_JOBS), | |
103 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
104 random_state=0, n_jobs=N_JOBS), | |
105 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | 114 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), |
106 imblearn.under_sampling.InstanceHardnessThreshold( | 115 imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), |
107 random_state=0, n_jobs=N_JOBS), | 116 imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), |
108 imblearn.under_sampling.NearMiss( | 117 imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), |
109 random_state=0, n_jobs=N_JOBS), | 118 imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), |
110 imblearn.under_sampling.NeighbourhoodCleaningRule( | 119 imblearn.under_sampling.RandomUnderSampler(random_state=0), |
111 random_state=0, n_jobs=N_JOBS), | 120 imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), |
112 imblearn.under_sampling.OneSidedSelection( | |
113 random_state=0, n_jobs=N_JOBS), | |
114 imblearn.under_sampling.RandomUnderSampler( | |
115 random_state=0), | |
116 imblearn.under_sampling.TomekLinks( | |
117 random_state=0, n_jobs=N_JOBS), | |
118 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | 121 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), |
119 imblearn.over_sampling.RandomOverSampler(random_state=0), | 122 imblearn.over_sampling.RandomOverSampler(random_state=0), |
120 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | 123 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), |
121 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | 124 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), |
122 imblearn.over_sampling.BorderlineSMOTE( | 125 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), |
123 random_state=0, n_jobs=N_JOBS), | 126 imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), |
124 imblearn.over_sampling.SMOTENC( | |
125 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
126 imblearn.combine.SMOTEENN(random_state=0), | 127 imblearn.combine.SMOTEENN(random_state=0), |
127 imblearn.combine.SMOTETomek(random_state=0)) | 128 imblearn.combine.SMOTETomek(random_state=0), |
129 ) | |
128 newlist = [] | 130 newlist = [] |
129 for obj in ev: | 131 for obj in ev: |
130 if obj is None: | 132 if obj is None: |
131 newlist.append(None) | 133 newlist.append(None) |
132 elif obj == 'all_0': | 134 elif obj == "all_0": |
133 newlist.extend(preprocessings[0:35]) | 135 newlist.extend(preprocessings[0:35]) |
134 elif obj == 'sk_prep_all': # no KernalCenter() | 136 elif obj == "sk_prep_all": # no KernalCenter() |
135 newlist.extend(preprocessings[0:7]) | 137 newlist.extend(preprocessings[0:7]) |
136 elif obj == 'fs_all': | 138 elif obj == "fs_all": |
137 newlist.extend(preprocessings[7:14]) | 139 newlist.extend(preprocessings[7:14]) |
138 elif obj == 'decomp_all': | 140 elif obj == "decomp_all": |
139 newlist.extend(preprocessings[14:25]) | 141 newlist.extend(preprocessings[14:25]) |
140 elif obj == 'k_appr_all': | 142 elif obj == "k_appr_all": |
141 newlist.extend(preprocessings[25:29]) | 143 newlist.extend(preprocessings[25:29]) |
142 elif obj == 'reb_all': | 144 elif obj == "reb_all": |
143 newlist.extend(preprocessings[30:35]) | 145 newlist.extend(preprocessings[30:35]) |
144 elif obj == 'imb_all': | 146 elif obj == "imb_all": |
145 newlist.extend(preprocessings[35:54]) | 147 newlist.extend(preprocessings[35:54]) |
146 elif type(obj) is int and -1 < obj < len(preprocessings): | 148 elif type(obj) is int and -1 < obj < len(preprocessings): |
147 newlist.append(preprocessings[obj]) | 149 newlist.append(preprocessings[obj]) |
148 elif hasattr(obj, 'get_params'): # user uploaded object | 150 elif hasattr(obj, "get_params"): # user uploaded object |
149 if 'n_jobs' in obj.get_params(): | 151 if "n_jobs" in obj.get_params(): |
150 newlist.append(obj.set_params(n_jobs=N_JOBS)) | 152 newlist.append(obj.set_params(n_jobs=N_JOBS)) |
151 else: | 153 else: |
152 newlist.append(obj) | 154 newlist.append(obj) |
153 else: | 155 else: |
154 sys.exit("Unsupported estimator type: %r" % (obj)) | 156 sys.exit("Unsupported estimator type: %r" % (obj)) |
156 search_params[param_name] = newlist | 158 search_params[param_name] = newlist |
157 | 159 |
158 return search_params | 160 return search_params |
159 | 161 |
160 | 162 |
161 def _handle_X_y(estimator, params, infile1, infile2, loaded_df={}, | 163 def _handle_X_y( |
162 ref_seq=None, intervals=None, targets=None, | 164 estimator, |
163 fasta_path=None): | 165 params, |
166 infile1, | |
167 infile2, | |
168 loaded_df={}, | |
169 ref_seq=None, | |
170 intervals=None, | |
171 targets=None, | |
172 fasta_path=None, | |
173 ): | |
164 """read inputs | 174 """read inputs |
165 | 175 |
166 Params | 176 Params |
167 ------- | 177 ------- |
168 estimator : estimator object | 178 estimator : estimator object |
190 X : numpy array | 200 X : numpy array |
191 y : numpy array | 201 y : numpy array |
192 """ | 202 """ |
193 estimator_params = estimator.get_params() | 203 estimator_params = estimator.get_params() |
194 | 204 |
195 input_type = params['input_options']['selected_input'] | 205 input_type = params["input_options"]["selected_input"] |
196 # tabular input | 206 # tabular input |
197 if input_type == 'tabular': | 207 if input_type == "tabular": |
198 header = 'infer' if params['input_options']['header1'] else None | 208 header = "infer" if params["input_options"]["header1"] else None |
199 column_option = (params['input_options']['column_selector_options_1'] | 209 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] |
200 ['selected_column_selector_option']) | 210 if column_option in [ |
201 if column_option in ['by_index_number', 'all_but_by_index_number', | 211 "by_index_number", |
202 'by_header_name', 'all_but_by_header_name']: | 212 "all_but_by_index_number", |
203 c = params['input_options']['column_selector_options_1']['col1'] | 213 "by_header_name", |
214 "all_but_by_header_name", | |
215 ]: | |
216 c = params["input_options"]["column_selector_options_1"]["col1"] | |
204 else: | 217 else: |
205 c = None | 218 c = None |
206 | 219 |
207 df_key = infile1 + repr(header) | 220 df_key = infile1 + repr(header) |
208 | 221 |
209 if df_key in loaded_df: | 222 if df_key in loaded_df: |
210 infile1 = loaded_df[df_key] | 223 infile1 = loaded_df[df_key] |
211 | 224 |
212 df = pd.read_csv(infile1, sep='\t', header=header, | 225 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) |
213 parse_dates=True) | |
214 loaded_df[df_key] = df | 226 loaded_df[df_key] = df |
215 | 227 |
216 X = read_columns(df, c=c, c_option=column_option).astype(float) | 228 X = read_columns(df, c=c, c_option=column_option).astype(float) |
217 # sparse input | 229 # sparse input |
218 elif input_type == 'sparse': | 230 elif input_type == "sparse": |
219 X = mmread(open(infile1, 'r')) | 231 X = mmread(open(infile1, "r")) |
220 | 232 |
221 # fasta_file input | 233 # fasta_file input |
222 elif input_type == 'seq_fasta': | 234 elif input_type == "seq_fasta": |
223 pyfaidx = get_module('pyfaidx') | 235 pyfaidx = get_module("pyfaidx") |
224 sequences = pyfaidx.Fasta(fasta_path) | 236 sequences = pyfaidx.Fasta(fasta_path) |
225 n_seqs = len(sequences.keys()) | 237 n_seqs = len(sequences.keys()) |
226 X = np.arange(n_seqs)[:, np.newaxis] | 238 X = np.arange(n_seqs)[:, np.newaxis] |
227 for param in estimator_params.keys(): | 239 for param in estimator_params.keys(): |
228 if param.endswith('fasta_path'): | 240 if param.endswith("fasta_path"): |
229 estimator.set_params( | 241 estimator.set_params(**{param: fasta_path}) |
230 **{param: fasta_path}) | |
231 break | 242 break |
232 else: | 243 else: |
233 raise ValueError( | 244 raise ValueError( |
234 "The selected estimator doesn't support " | 245 "The selected estimator doesn't support " |
235 "fasta file input! Please consider using " | 246 "fasta file input! Please consider using " |
236 "KerasGBatchClassifier with " | 247 "KerasGBatchClassifier with " |
237 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | 248 "FastaDNABatchGenerator/FastaProteinBatchGenerator " |
238 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | 249 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " |
239 "in pipeline!") | 250 "in pipeline!" |
240 | 251 ) |
241 elif input_type == 'refseq_and_interval': | 252 |
253 elif input_type == "refseq_and_interval": | |
242 path_params = { | 254 path_params = { |
243 'data_batch_generator__ref_genome_path': ref_seq, | 255 "data_batch_generator__ref_genome_path": ref_seq, |
244 'data_batch_generator__intervals_path': intervals, | 256 "data_batch_generator__intervals_path": intervals, |
245 'data_batch_generator__target_path': targets | 257 "data_batch_generator__target_path": targets, |
246 } | 258 } |
247 estimator.set_params(**path_params) | 259 estimator.set_params(**path_params) |
248 n_intervals = sum(1 for line in open(intervals)) | 260 n_intervals = sum(1 for line in open(intervals)) |
249 X = np.arange(n_intervals)[:, np.newaxis] | 261 X = np.arange(n_intervals)[:, np.newaxis] |
250 | 262 |
251 # Get target y | 263 # Get target y |
252 header = 'infer' if params['input_options']['header2'] else None | 264 header = "infer" if params["input_options"]["header2"] else None |
253 column_option = (params['input_options']['column_selector_options_2'] | 265 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] |
254 ['selected_column_selector_option2']) | 266 if column_option in [ |
255 if column_option in ['by_index_number', 'all_but_by_index_number', | 267 "by_index_number", |
256 'by_header_name', 'all_but_by_header_name']: | 268 "all_but_by_index_number", |
257 c = params['input_options']['column_selector_options_2']['col2'] | 269 "by_header_name", |
270 "all_but_by_header_name", | |
271 ]: | |
272 c = params["input_options"]["column_selector_options_2"]["col2"] | |
258 else: | 273 else: |
259 c = None | 274 c = None |
260 | 275 |
261 df_key = infile2 + repr(header) | 276 df_key = infile2 + repr(header) |
262 if df_key in loaded_df: | 277 if df_key in loaded_df: |
263 infile2 = loaded_df[df_key] | 278 infile2 = loaded_df[df_key] |
264 else: | 279 else: |
265 infile2 = pd.read_csv(infile2, sep='\t', | 280 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
266 header=header, parse_dates=True) | |
267 loaded_df[df_key] = infile2 | 281 loaded_df[df_key] = infile2 |
268 | 282 |
269 y = read_columns( | 283 y = read_columns(infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True) |
270 infile2, | |
271 c=c, | |
272 c_option=column_option, | |
273 sep='\t', | |
274 header=header, | |
275 parse_dates=True) | |
276 if len(y.shape) == 2 and y.shape[1] == 1: | 284 if len(y.shape) == 2 and y.shape[1] == 1: |
277 y = y.ravel() | 285 y = y.ravel() |
278 if input_type == 'refseq_and_interval': | 286 if input_type == "refseq_and_interval": |
279 estimator.set_params( | 287 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) |
280 data_batch_generator__features=y.ravel().tolist()) | |
281 y = None | 288 y = None |
282 # end y | 289 # end y |
283 | 290 |
284 return estimator, X, y | 291 return estimator, X, y |
285 | 292 |
286 | 293 |
287 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score='raise', | 294 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score="raise", outfile=None): |
288 outfile=None): | |
289 """Do outer cross-validation for nested CV | 295 """Do outer cross-validation for nested CV |
290 | 296 |
291 Parameters | 297 Parameters |
292 ---------- | 298 ---------- |
293 searcher : object | 299 searcher : object |
303 error_score: str, float or numpy float | 309 error_score: str, float or numpy float |
304 Whether to raise fit error or return an value | 310 Whether to raise fit error or return an value |
305 outfile : str | 311 outfile : str |
306 File path to store the restuls | 312 File path to store the restuls |
307 """ | 313 """ |
308 if error_score == 'raise': | 314 if error_score == "raise": |
309 rval = cross_validate( | 315 rval = cross_validate( |
310 searcher, X, y, scoring=scoring, | 316 searcher, |
311 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | 317 X, |
312 error_score=error_score) | 318 y, |
313 else: | 319 scoring=scoring, |
314 warnings.simplefilter('always', FitFailedWarning) | 320 cv=outer_cv, |
321 n_jobs=N_JOBS, | |
322 verbose=0, | |
323 error_score=error_score, | |
324 ) | |
325 else: | |
326 warnings.simplefilter("always", FitFailedWarning) | |
315 with warnings.catch_warnings(record=True) as w: | 327 with warnings.catch_warnings(record=True) as w: |
316 try: | 328 try: |
317 rval = cross_validate( | 329 rval = cross_validate( |
318 searcher, X, y, | 330 searcher, |
331 X, | |
332 y, | |
319 scoring=scoring, | 333 scoring=scoring, |
320 cv=outer_cv, n_jobs=N_JOBS, | 334 cv=outer_cv, |
335 n_jobs=N_JOBS, | |
321 verbose=0, | 336 verbose=0, |
322 error_score=error_score) | 337 error_score=error_score, |
338 ) | |
323 except ValueError: | 339 except ValueError: |
324 pass | 340 pass |
325 for warning in w: | 341 for warning in w: |
326 print(repr(warning.message)) | 342 print(repr(warning.message)) |
327 | 343 |
328 keys = list(rval.keys()) | 344 keys = list(rval.keys()) |
329 for k in keys: | 345 for k in keys: |
330 if k.startswith('test'): | 346 if k.startswith("test"): |
331 rval['mean_' + k] = np.mean(rval[k]) | 347 rval["mean_" + k] = np.mean(rval[k]) |
332 rval['std_' + k] = np.std(rval[k]) | 348 rval["std_" + k] = np.std(rval[k]) |
333 if k.endswith('time'): | 349 if k.endswith("time"): |
334 rval.pop(k) | 350 rval.pop(k) |
335 rval = pd.DataFrame(rval) | 351 rval = pd.DataFrame(rval) |
336 rval = rval[sorted(rval.columns)] | 352 rval = rval[sorted(rval.columns)] |
337 rval.to_csv(path_or_buf=outfile, sep='\t', header=True, index=False) | 353 rval.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) |
338 | 354 |
339 | 355 |
340 def _do_train_test_split_val(searcher, X, y, params, error_score='raise', | 356 def _do_train_test_split_val( |
341 primary_scoring=None, groups=None, | 357 searcher, |
342 outfile=None): | 358 X, |
343 """ do train test split, searchCV validates on the train and then use | 359 y, |
360 params, | |
361 error_score="raise", | |
362 primary_scoring=None, | |
363 groups=None, | |
364 outfile=None, | |
365 ): | |
366 """do train test split, searchCV validates on the train and then use | |
344 the best_estimator_ to evaluate on the test | 367 the best_estimator_ to evaluate on the test |
345 | 368 |
346 Returns | 369 Returns |
347 -------- | 370 -------- |
348 Fitted SearchCV object | 371 Fitted SearchCV object |
349 """ | 372 """ |
350 train_test_split = try_get_attr( | 373 train_test_split = try_get_attr("galaxy_ml.model_validations", "train_test_split") |
351 'galaxy_ml.model_validations', 'train_test_split') | 374 split_options = params["outer_split"] |
352 split_options = params['outer_split'] | |
353 | 375 |
354 # splits | 376 # splits |
355 if split_options['shuffle'] == 'stratified': | 377 if split_options["shuffle"] == "stratified": |
356 split_options['labels'] = y | 378 split_options["labels"] = y |
357 X, X_test, y, y_test = train_test_split(X, y, **split_options) | 379 X, X_test, y, y_test = train_test_split(X, y, **split_options) |
358 elif split_options['shuffle'] == 'group': | 380 elif split_options["shuffle"] == "group": |
359 if groups is None: | 381 if groups is None: |
360 raise ValueError("No group based CV option was choosen for " | 382 raise ValueError("No group based CV option was choosen for " "group shuffle!") |
361 "group shuffle!") | 383 split_options["labels"] = groups |
362 split_options['labels'] = groups | |
363 if y is None: | 384 if y is None: |
364 X, X_test, groups, _ =\ | 385 X, X_test, groups, _ = train_test_split(X, groups, **split_options) |
365 train_test_split(X, groups, **split_options) | |
366 else: | 386 else: |
367 X, X_test, y, y_test, groups, _ =\ | 387 X, X_test, y, y_test, groups, _ = train_test_split(X, y, groups, **split_options) |
368 train_test_split(X, y, groups, **split_options) | 388 else: |
369 else: | 389 if split_options["shuffle"] == "None": |
370 if split_options['shuffle'] == 'None': | 390 split_options["shuffle"] = None |
371 split_options['shuffle'] = None | 391 X, X_test, y, y_test = train_test_split(X, y, **split_options) |
372 X, X_test, y, y_test =\ | 392 |
373 train_test_split(X, y, **split_options) | 393 if error_score == "raise": |
374 | |
375 if error_score == 'raise': | |
376 searcher.fit(X, y, groups=groups) | 394 searcher.fit(X, y, groups=groups) |
377 else: | 395 else: |
378 warnings.simplefilter('always', FitFailedWarning) | 396 warnings.simplefilter("always", FitFailedWarning) |
379 with warnings.catch_warnings(record=True) as w: | 397 with warnings.catch_warnings(record=True) as w: |
380 try: | 398 try: |
381 searcher.fit(X, y, groups=groups) | 399 searcher.fit(X, y, groups=groups) |
382 except ValueError: | 400 except ValueError: |
383 pass | 401 pass |
388 if isinstance(scorer_, collections.Mapping): | 406 if isinstance(scorer_, collections.Mapping): |
389 is_multimetric = True | 407 is_multimetric = True |
390 else: | 408 else: |
391 is_multimetric = False | 409 is_multimetric = False |
392 | 410 |
393 best_estimator_ = getattr(searcher, 'best_estimator_') | 411 best_estimator_ = getattr(searcher, "best_estimator_") |
394 | 412 |
395 # TODO Solve deep learning models in pipeline | 413 # TODO Solve deep learning models in pipeline |
396 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier': | 414 if best_estimator_.__class__.__name__ == "KerasGBatchClassifier": |
397 test_score = best_estimator_.evaluate( | 415 test_score = best_estimator_.evaluate(X_test, scorer=scorer_, is_multimetric=is_multimetric) |
398 X_test, scorer=scorer_, is_multimetric=is_multimetric) | 416 else: |
399 else: | 417 test_score = _score(best_estimator_, X_test, y_test, scorer_, is_multimetric=is_multimetric) |
400 test_score = _score(best_estimator_, X_test, | |
401 y_test, scorer_, | |
402 is_multimetric=is_multimetric) | |
403 | 418 |
404 if not is_multimetric: | 419 if not is_multimetric: |
405 test_score = {primary_scoring: test_score} | 420 test_score = {primary_scoring: test_score} |
406 for key, value in test_score.items(): | 421 for key, value in test_score.items(): |
407 test_score[key] = [value] | 422 test_score[key] = [value] |
408 result_df = pd.DataFrame(test_score) | 423 result_df = pd.DataFrame(test_score) |
409 result_df.to_csv(path_or_buf=outfile, sep='\t', header=True, | 424 result_df.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) |
410 index=False) | |
411 | 425 |
412 return searcher | 426 return searcher |
413 | 427 |
414 | 428 |
415 def main(inputs, infile_estimator, infile1, infile2, | 429 def main( |
416 outfile_result, outfile_object=None, | 430 inputs, |
417 outfile_weights=None, groups=None, | 431 infile_estimator, |
418 ref_seq=None, intervals=None, targets=None, | 432 infile1, |
419 fasta_path=None): | 433 infile2, |
434 outfile_result, | |
435 outfile_object=None, | |
436 outfile_weights=None, | |
437 groups=None, | |
438 ref_seq=None, | |
439 intervals=None, | |
440 targets=None, | |
441 fasta_path=None, | |
442 ): | |
420 """ | 443 """ |
421 Parameter | 444 Parameter |
422 --------- | 445 --------- |
423 inputs : str | 446 inputs : str |
424 File path to galaxy tool parameter | 447 File path to galaxy tool parameter |
454 File path to dataset compressed target bed file | 477 File path to dataset compressed target bed file |
455 | 478 |
456 fasta_path : str | 479 fasta_path : str |
457 File path to dataset containing fasta file | 480 File path to dataset containing fasta file |
458 """ | 481 """ |
459 warnings.simplefilter('ignore') | 482 warnings.simplefilter("ignore") |
460 | 483 |
461 # store read dataframe object | 484 # store read dataframe object |
462 loaded_df = {} | 485 loaded_df = {} |
463 | 486 |
464 with open(inputs, 'r') as param_handler: | 487 with open(inputs, "r") as param_handler: |
465 params = json.load(param_handler) | 488 params = json.load(param_handler) |
466 | 489 |
467 # Override the refit parameter | 490 # Override the refit parameter |
468 params['search_schemes']['options']['refit'] = True \ | 491 params["search_schemes"]["options"]["refit"] = True if params["save"] != "nope" else False |
469 if params['save'] != 'nope' else False | 492 |
470 | 493 with open(infile_estimator, "rb") as estimator_handler: |
471 with open(infile_estimator, 'rb') as estimator_handler: | |
472 estimator = load_model(estimator_handler) | 494 estimator = load_model(estimator_handler) |
473 | 495 |
474 optimizer = params['search_schemes']['selected_search_scheme'] | 496 optimizer = params["search_schemes"]["selected_search_scheme"] |
475 optimizer = getattr(model_selection, optimizer) | 497 optimizer = getattr(model_selection, optimizer) |
476 | 498 |
477 # handle gridsearchcv options | 499 # handle gridsearchcv options |
478 options = params['search_schemes']['options'] | 500 options = params["search_schemes"]["options"] |
479 | 501 |
480 if groups: | 502 if groups: |
481 header = 'infer' if (options['cv_selector']['groups_selector'] | 503 header = "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None |
482 ['header_g']) else None | 504 column_option = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ |
483 column_option = (options['cv_selector']['groups_selector'] | 505 "selected_column_selector_option_g" |
484 ['column_selector_options_g'] | 506 ] |
485 ['selected_column_selector_option_g']) | 507 if column_option in [ |
486 if column_option in ['by_index_number', 'all_but_by_index_number', | 508 "by_index_number", |
487 'by_header_name', 'all_but_by_header_name']: | 509 "all_but_by_index_number", |
488 c = (options['cv_selector']['groups_selector'] | 510 "by_header_name", |
489 ['column_selector_options_g']['col_g']) | 511 "all_but_by_header_name", |
512 ]: | |
513 c = options["cv_selector"]["groups_selector"]["column_selector_options_g"]["col_g"] | |
490 else: | 514 else: |
491 c = None | 515 c = None |
492 | 516 |
493 df_key = groups + repr(header) | 517 df_key = groups + repr(header) |
494 | 518 |
495 groups = pd.read_csv(groups, sep='\t', header=header, | 519 groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) |
496 parse_dates=True) | |
497 loaded_df[df_key] = groups | 520 loaded_df[df_key] = groups |
498 | 521 |
499 groups = read_columns( | 522 groups = read_columns( |
500 groups, | 523 groups, |
501 c=c, | 524 c=c, |
502 c_option=column_option, | 525 c_option=column_option, |
503 sep='\t', | 526 sep="\t", |
504 header=header, | 527 header=header, |
505 parse_dates=True) | 528 parse_dates=True, |
529 ) | |
506 groups = groups.ravel() | 530 groups = groups.ravel() |
507 options['cv_selector']['groups_selector'] = groups | 531 options["cv_selector"]["groups_selector"] = groups |
508 | 532 |
509 splitter, groups = get_cv(options.pop('cv_selector')) | 533 splitter, groups = get_cv(options.pop("cv_selector")) |
510 options['cv'] = splitter | 534 options["cv"] = splitter |
511 primary_scoring = options['scoring']['primary_scoring'] | 535 primary_scoring = options["scoring"]["primary_scoring"] |
512 options['scoring'] = get_scoring(options['scoring']) | 536 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) |
513 if options['error_score']: | 537 # Check if secondary_scoring is specified |
514 options['error_score'] = 'raise' | 538 secondary_scoring = options["scoring"].get("secondary_scoring", None) |
515 else: | 539 if secondary_scoring is not None: |
516 options['error_score'] = np.NaN | 540 # If secondary_scoring is specified, convert the list into comman separated string |
517 if options['refit'] and isinstance(options['scoring'], dict): | 541 options["scoring"]["secondary_scoring"] = ",".join(options["scoring"]["secondary_scoring"]) |
518 options['refit'] = primary_scoring | 542 options["scoring"] = get_scoring(options["scoring"]) |
519 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | 543 if options["error_score"]: |
520 options['pre_dispatch'] = None | 544 options["error_score"] = "raise" |
521 | 545 else: |
522 params_builder = params['search_schemes']['search_params_builder'] | 546 options["error_score"] = np.NaN |
547 if options["refit"] and isinstance(options["scoring"], dict): | |
548 options["refit"] = primary_scoring | |
549 if "pre_dispatch" in options and options["pre_dispatch"] == "": | |
550 options["pre_dispatch"] = None | |
551 | |
552 params_builder = params["search_schemes"]["search_params_builder"] | |
523 param_grid = _eval_search_params(params_builder) | 553 param_grid = _eval_search_params(params_builder) |
524 | 554 |
525 estimator = clean_params(estimator) | 555 estimator = clean_params(estimator) |
526 | 556 |
527 # save the SearchCV object without fit | 557 # save the SearchCV object without fit |
528 if params['save'] == 'save_no_fit': | 558 if params["save"] == "save_no_fit": |
529 searcher = optimizer(estimator, param_grid, **options) | 559 searcher = optimizer(estimator, param_grid, **options) |
530 print(searcher) | 560 print(searcher) |
531 with open(outfile_object, 'wb') as output_handler: | 561 with open(outfile_object, "wb") as output_handler: |
532 pickle.dump(searcher, output_handler, | 562 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) |
533 pickle.HIGHEST_PROTOCOL) | |
534 return 0 | 563 return 0 |
535 | 564 |
536 # read inputs and loads new attributes, like paths | 565 # read inputs and loads new attributes, like paths |
537 estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, | 566 estimator, X, y = _handle_X_y( |
538 loaded_df=loaded_df, ref_seq=ref_seq, | 567 estimator, |
539 intervals=intervals, targets=targets, | 568 params, |
540 fasta_path=fasta_path) | 569 infile1, |
570 infile2, | |
571 loaded_df=loaded_df, | |
572 ref_seq=ref_seq, | |
573 intervals=intervals, | |
574 targets=targets, | |
575 fasta_path=fasta_path, | |
576 ) | |
541 | 577 |
542 # cache iraps_core fits could increase search speed significantly | 578 # cache iraps_core fits could increase search speed significantly |
543 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 579 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
544 main_est = get_main_estimator(estimator) | 580 main_est = get_main_estimator(estimator) |
545 if main_est.__class__.__name__ == 'IRAPSClassifier': | 581 if main_est.__class__.__name__ == "IRAPSClassifier": |
546 main_est.set_params(memory=memory) | 582 main_est.set_params(memory=memory) |
547 | 583 |
548 searcher = optimizer(estimator, param_grid, **options) | 584 searcher = optimizer(estimator, param_grid, **options) |
549 | 585 |
550 split_mode = params['outer_split'].pop('split_mode') | 586 split_mode = params["outer_split"].pop("split_mode") |
551 | 587 |
552 if split_mode == 'nested_cv': | 588 if split_mode == "nested_cv": |
553 # make sure refit is choosen | 589 # make sure refit is choosen |
554 # this could be True for sklearn models, but not the case for | 590 # this could be True for sklearn models, but not the case for |
555 # deep learning models | 591 # deep learning models |
556 if not options['refit'] and \ | 592 if not options["refit"] and not all(hasattr(estimator, attr) for attr in ("config", "model_type")): |
557 not all(hasattr(estimator, attr) | |
558 for attr in ('config', 'model_type')): | |
559 warnings.warn("Refit is change to `True` for nested validation!") | 593 warnings.warn("Refit is change to `True` for nested validation!") |
560 setattr(searcher, 'refit', True) | 594 setattr(searcher, "refit", True) |
561 | 595 |
562 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | 596 outer_cv, _ = get_cv(params["outer_split"]["cv_selector"]) |
563 # nested CV, outer cv using cross_validate | 597 # nested CV, outer cv using cross_validate |
564 if options['error_score'] == 'raise': | 598 if options["error_score"] == "raise": |
565 rval = cross_validate( | 599 rval = cross_validate( |
566 searcher, X, y, scoring=options['scoring'], | 600 searcher, |
567 cv=outer_cv, n_jobs=N_JOBS, | 601 X, |
568 verbose=options['verbose'], | 602 y, |
569 return_estimator=(params['save'] == 'save_estimator'), | 603 scoring=options["scoring"], |
570 error_score=options['error_score'], | 604 cv=outer_cv, |
571 return_train_score=True) | 605 n_jobs=N_JOBS, |
606 verbose=options["verbose"], | |
607 return_estimator=(params["save"] == "save_estimator"), | |
608 error_score=options["error_score"], | |
609 return_train_score=True, | |
610 ) | |
572 else: | 611 else: |
573 warnings.simplefilter('always', FitFailedWarning) | 612 warnings.simplefilter("always", FitFailedWarning) |
574 with warnings.catch_warnings(record=True) as w: | 613 with warnings.catch_warnings(record=True) as w: |
575 try: | 614 try: |
576 rval = cross_validate( | 615 rval = cross_validate( |
577 searcher, X, y, | 616 searcher, |
578 scoring=options['scoring'], | 617 X, |
579 cv=outer_cv, n_jobs=N_JOBS, | 618 y, |
580 verbose=options['verbose'], | 619 scoring=options["scoring"], |
581 return_estimator=(params['save'] == 'save_estimator'), | 620 cv=outer_cv, |
582 error_score=options['error_score'], | 621 n_jobs=N_JOBS, |
583 return_train_score=True) | 622 verbose=options["verbose"], |
623 return_estimator=(params["save"] == "save_estimator"), | |
624 error_score=options["error_score"], | |
625 return_train_score=True, | |
626 ) | |
584 except ValueError: | 627 except ValueError: |
585 pass | 628 pass |
586 for warning in w: | 629 for warning in w: |
587 print(repr(warning.message)) | 630 print(repr(warning.message)) |
588 | 631 |
589 fitted_searchers = rval.pop('estimator', []) | 632 fitted_searchers = rval.pop("estimator", []) |
590 if fitted_searchers: | 633 if fitted_searchers: |
591 import os | 634 import os |
635 | |
592 pwd = os.getcwd() | 636 pwd = os.getcwd() |
593 save_dir = os.path.join(pwd, 'cv_results_in_folds') | 637 save_dir = os.path.join(pwd, "cv_results_in_folds") |
594 try: | 638 try: |
595 os.mkdir(save_dir) | 639 os.mkdir(save_dir) |
596 for idx, obj in enumerate(fitted_searchers): | 640 for idx, obj in enumerate(fitted_searchers): |
597 target_name = 'cv_results_' + '_' + 'split%d' % idx | 641 target_name = "cv_results_" + "_" + "split%d" % idx |
598 target_path = os.path.join(pwd, save_dir, target_name) | 642 target_path = os.path.join(pwd, save_dir, target_name) |
599 cv_results_ = getattr(obj, 'cv_results_', None) | 643 cv_results_ = getattr(obj, "cv_results_", None) |
600 if not cv_results_: | 644 if not cv_results_: |
601 print("%s is not available" % target_name) | 645 print("%s is not available" % target_name) |
602 continue | 646 continue |
603 cv_results_ = pd.DataFrame(cv_results_) | 647 cv_results_ = pd.DataFrame(cv_results_) |
604 cv_results_ = cv_results_[sorted(cv_results_.columns)] | 648 cv_results_ = cv_results_[sorted(cv_results_.columns)] |
605 cv_results_.to_csv(target_path, sep='\t', header=True, | 649 cv_results_.to_csv(target_path, sep="\t", header=True, index=False) |
606 index=False) | |
607 except Exception as e: | 650 except Exception as e: |
608 print(e) | 651 print(e) |
609 finally: | 652 finally: |
610 del os | 653 del os |
611 | 654 |
612 keys = list(rval.keys()) | 655 keys = list(rval.keys()) |
613 for k in keys: | 656 for k in keys: |
614 if k.startswith('test'): | 657 if k.startswith("test"): |
615 rval['mean_' + k] = np.mean(rval[k]) | 658 rval["mean_" + k] = np.mean(rval[k]) |
616 rval['std_' + k] = np.std(rval[k]) | 659 rval["std_" + k] = np.std(rval[k]) |
617 if k.endswith('time'): | 660 if k.endswith("time"): |
618 rval.pop(k) | 661 rval.pop(k) |
619 rval = pd.DataFrame(rval) | 662 rval = pd.DataFrame(rval) |
620 rval = rval[sorted(rval.columns)] | 663 rval = rval[sorted(rval.columns)] |
621 rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, | 664 rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) |
622 index=False) | |
623 | |
624 return 0 | |
625 | |
626 # deprecate train test split mode | 665 # deprecate train test split mode |
627 """searcher = _do_train_test_split_val( | 666 """searcher = _do_train_test_split_val( |
628 searcher, X, y, params, | 667 searcher, X, y, params, |
629 primary_scoring=primary_scoring, | 668 primary_scoring=primary_scoring, |
630 error_score=options['error_score'], | 669 error_score=options['error_score'], |
631 groups=groups, | 670 groups=groups, |
632 outfile=outfile_result)""" | 671 outfile=outfile_result)""" |
672 return 0 | |
633 | 673 |
634 # no outer split | 674 # no outer split |
635 else: | 675 else: |
636 searcher.set_params(n_jobs=N_JOBS) | 676 searcher.set_params(n_jobs=N_JOBS) |
637 if options['error_score'] == 'raise': | 677 if options["error_score"] == "raise": |
638 searcher.fit(X, y, groups=groups) | 678 searcher.fit(X, y, groups=groups) |
639 else: | 679 else: |
640 warnings.simplefilter('always', FitFailedWarning) | 680 warnings.simplefilter("always", FitFailedWarning) |
641 with warnings.catch_warnings(record=True) as w: | 681 with warnings.catch_warnings(record=True) as w: |
642 try: | 682 try: |
643 searcher.fit(X, y, groups=groups) | 683 searcher.fit(X, y, groups=groups) |
644 except ValueError: | 684 except ValueError: |
645 pass | 685 pass |
646 for warning in w: | 686 for warning in w: |
647 print(repr(warning.message)) | 687 print(repr(warning.message)) |
648 | 688 |
649 cv_results = pd.DataFrame(searcher.cv_results_) | 689 cv_results = pd.DataFrame(searcher.cv_results_) |
650 cv_results = cv_results[sorted(cv_results.columns)] | 690 cv_results = cv_results[sorted(cv_results.columns)] |
651 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | 691 cv_results.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) |
652 header=True, index=False) | |
653 | 692 |
654 memory.clear(warn=False) | 693 memory.clear(warn=False) |
655 | 694 |
656 # output best estimator, and weights if applicable | 695 # output best estimator, and weights if applicable |
657 if outfile_object: | 696 if outfile_object: |
658 best_estimator_ = getattr(searcher, 'best_estimator_', None) | 697 best_estimator_ = getattr(searcher, "best_estimator_", None) |
659 if not best_estimator_: | 698 if not best_estimator_: |
660 warnings.warn("GridSearchCV object has no attribute " | 699 warnings.warn( |
661 "'best_estimator_', because either it's " | 700 "GridSearchCV object has no attribute " |
662 "nested gridsearch or `refit` is False!") | 701 "'best_estimator_', because either it's " |
702 "nested gridsearch or `refit` is False!" | |
703 ) | |
663 return | 704 return |
664 | 705 |
665 # clean prams | 706 # clean prams |
666 best_estimator_ = clean_params(best_estimator_) | 707 best_estimator_ = clean_params(best_estimator_) |
667 | 708 |
668 main_est = get_main_estimator(best_estimator_) | 709 main_est = get_main_estimator(best_estimator_) |
669 | 710 |
670 if hasattr(main_est, 'model_') \ | 711 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): |
671 and hasattr(main_est, 'save_weights'): | |
672 if outfile_weights: | 712 if outfile_weights: |
673 main_est.save_weights(outfile_weights) | 713 main_est.save_weights(outfile_weights) |
674 del main_est.model_ | 714 del main_est.model_ |
675 del main_est.fit_params | 715 del main_est.fit_params |
676 del main_est.model_class_ | 716 del main_est.model_class_ |
677 del main_est.validation_data | 717 del main_est.validation_data |
678 if getattr(main_est, 'data_generator_', None): | 718 if getattr(main_est, "data_generator_", None): |
679 del main_est.data_generator_ | 719 del main_est.data_generator_ |
680 | 720 |
681 with open(outfile_object, 'wb') as output_handler: | 721 with open(outfile_object, "wb") as output_handler: |
682 print("Best estimator is saved: %s " % repr(best_estimator_)) | 722 print("Best estimator is saved: %s " % repr(best_estimator_)) |
683 pickle.dump(best_estimator_, output_handler, | 723 pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) |
684 pickle.HIGHEST_PROTOCOL) | 724 |
685 | 725 |
686 | 726 if __name__ == "__main__": |
687 if __name__ == '__main__': | |
688 aparser = argparse.ArgumentParser() | 727 aparser = argparse.ArgumentParser() |
689 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 728 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
690 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 729 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
691 aparser.add_argument("-X", "--infile1", dest="infile1") | 730 aparser.add_argument("-X", "--infile1", dest="infile1") |
692 aparser.add_argument("-y", "--infile2", dest="infile2") | 731 aparser.add_argument("-y", "--infile2", dest="infile2") |
698 aparser.add_argument("-b", "--intervals", dest="intervals") | 737 aparser.add_argument("-b", "--intervals", dest="intervals") |
699 aparser.add_argument("-t", "--targets", dest="targets") | 738 aparser.add_argument("-t", "--targets", dest="targets") |
700 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 739 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") |
701 args = aparser.parse_args() | 740 args = aparser.parse_args() |
702 | 741 |
703 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 742 main( |
704 args.outfile_result, outfile_object=args.outfile_object, | 743 args.inputs, |
705 outfile_weights=args.outfile_weights, groups=args.groups, | 744 args.infile_estimator, |
706 ref_seq=args.ref_seq, intervals=args.intervals, | 745 args.infile1, |
707 targets=args.targets, fasta_path=args.fasta_path) | 746 args.infile2, |
747 args.outfile_result, | |
748 outfile_object=args.outfile_object, | |
749 outfile_weights=args.outfile_weights, | |
750 groups=args.groups, | |
751 ref_seq=args.ref_seq, | |
752 intervals=args.intervals, | |
753 targets=args.targets, | |
754 fasta_path=args.fasta_path, | |
755 ) |