Mercurial > repos > bgruening > sklearn_data_preprocess
comparison stacking_ensembles.py @ 41:a16f33c6ca64 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 13:29:02 +0000 |
parents | 1bef885255e0 |
children |
comparison
equal
deleted
inserted
replaced
40:80074b842ebd | 41:a16f33c6ca64 |
---|---|
1 import argparse | 1 import argparse |
2 import ast | 2 import ast |
3 import json | 3 import json |
4 import pickle | |
5 import sys | 4 import sys |
6 import warnings | 5 import warnings |
6 from distutils.version import LooseVersion as Version | |
7 | 7 |
8 import mlxtend.classifier | 8 import mlxtend.classifier |
9 import mlxtend.regressor | 9 import mlxtend.regressor |
10 import pandas as pd | 10 from galaxy_ml import __version__ as galaxy_ml_version |
11 from galaxy_ml.utils import (get_cv, get_estimator, get_search_params, | 11 from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 |
12 load_model) | 12 from galaxy_ml.utils import get_cv, get_estimator |
13 | 13 |
14 warnings.filterwarnings("ignore") | 14 warnings.filterwarnings("ignore") |
15 | 15 |
16 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | 16 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) |
17 | 17 |
18 | 18 |
19 def main(inputs_path, output_obj, base_paths=None, meta_path=None, outfile_params=None): | 19 def main(inputs_path, output_obj, base_paths=None, meta_path=None): |
20 """ | 20 """ |
21 Parameter | 21 Parameter |
22 --------- | 22 --------- |
23 inputs_path : str | 23 inputs_path : str |
24 File path for Galaxy parameters | 24 File path for Galaxy parameters |
29 base_paths : str | 29 base_paths : str |
30 File path or paths concatenated by comma. | 30 File path or paths concatenated by comma. |
31 | 31 |
32 meta_path : str | 32 meta_path : str |
33 File path | 33 File path |
34 | |
35 outfile_params : str | |
36 File path for params output | |
37 """ | 34 """ |
38 with open(inputs_path, "r") as param_handler: | 35 with open(inputs_path, "r") as param_handler: |
39 params = json.load(param_handler) | 36 params = json.load(param_handler) |
40 | 37 |
41 estimator_type = params["algo_selection"]["estimator_type"] | 38 estimator_type = params["algo_selection"]["estimator_type"] |
42 # get base estimators | 39 # get base estimators |
43 base_estimators = [] | 40 base_estimators = [] |
44 for idx, base_file in enumerate(base_paths.split(",")): | 41 for idx, base_file in enumerate(base_paths.split(",")): |
45 if base_file and base_file != "None": | 42 if base_file and base_file != "None": |
46 with open(base_file, "rb") as handler: | 43 model = load_model_from_h5(base_file) |
47 model = load_model(handler) | |
48 else: | 44 else: |
49 estimator_json = params["base_est_builder"][idx]["estimator_selector"] | 45 estimator_json = params["base_est_builder"][idx]["estimator_selector"] |
50 model = get_estimator(estimator_json) | 46 model = get_estimator(estimator_json) |
51 | 47 |
52 if estimator_type.startswith("sklearn"): | 48 if estimator_type.startswith("sklearn"): |
57 base_estimators.append(model) | 53 base_estimators.append(model) |
58 | 54 |
59 # get meta estimator, if applicable | 55 # get meta estimator, if applicable |
60 if estimator_type.startswith("mlxtend"): | 56 if estimator_type.startswith("mlxtend"): |
61 if meta_path: | 57 if meta_path: |
62 with open(meta_path, "rb") as f: | 58 meta_estimator = load_model_from_h5(meta_path) |
63 meta_estimator = load_model(f) | |
64 else: | 59 else: |
65 estimator_json = params["algo_selection"]["meta_estimator"][ | 60 estimator_json = params["algo_selection"]["meta_estimator"][ |
66 "estimator_selector" | 61 "estimator_selector" |
67 ] | 62 ] |
68 meta_estimator = get_estimator(estimator_json) | 63 meta_estimator = get_estimator(estimator_json) |
69 | 64 |
70 options = params["algo_selection"]["options"] | 65 options = params["algo_selection"]["options"] |
71 | 66 |
72 cv_selector = options.pop("cv_selector", None) | 67 cv_selector = options.pop("cv_selector", None) |
73 if cv_selector: | 68 if cv_selector: |
74 splitter, _groups = get_cv(cv_selector) | 69 if Version(galaxy_ml_version) < Version("0.8.3"): |
70 cv_selector.pop("n_stratification_bins", None) | |
71 splitter, groups = get_cv(cv_selector) | |
75 options["cv"] = splitter | 72 options["cv"] = splitter |
76 # set n_jobs | 73 # set n_jobs |
77 options["n_jobs"] = N_JOBS | 74 options["n_jobs"] = N_JOBS |
78 | 75 |
79 weights = options.pop("weights", None) | 76 weights = options.pop("weights", None) |
102 | 99 |
103 print(ensemble_estimator) | 100 print(ensemble_estimator) |
104 for base_est in base_estimators: | 101 for base_est in base_estimators: |
105 print(base_est) | 102 print(base_est) |
106 | 103 |
107 with open(output_obj, "wb") as out_handler: | 104 dump_model_to_h5(ensemble_estimator, output_obj) |
108 pickle.dump(ensemble_estimator, out_handler, pickle.HIGHEST_PROTOCOL) | |
109 | |
110 if params["get_params"] and outfile_params: | |
111 results = get_search_params(ensemble_estimator) | |
112 df = pd.DataFrame(results, columns=["", "Parameter", "Value"]) | |
113 df.to_csv(outfile_params, sep="\t", index=False) | |
114 | 105 |
115 | 106 |
116 if __name__ == "__main__": | 107 if __name__ == "__main__": |
117 aparser = argparse.ArgumentParser() | 108 aparser = argparse.ArgumentParser() |
118 aparser.add_argument("-b", "--bases", dest="bases") | 109 aparser.add_argument("-b", "--bases", dest="bases") |
119 aparser.add_argument("-m", "--meta", dest="meta") | 110 aparser.add_argument("-m", "--meta", dest="meta") |
120 aparser.add_argument("-i", "--inputs", dest="inputs") | 111 aparser.add_argument("-i", "--inputs", dest="inputs") |
121 aparser.add_argument("-o", "--outfile", dest="outfile") | 112 aparser.add_argument("-o", "--outfile", dest="outfile") |
122 aparser.add_argument("-p", "--outfile_params", dest="outfile_params") | |
123 args = aparser.parse_args() | 113 args = aparser.parse_args() |
124 | 114 |
125 main( | 115 main(args.inputs, args.outfile, base_paths=args.bases, meta_path=args.meta) |
126 args.inputs, | |
127 args.outfile, | |
128 base_paths=args.bases, | |
129 meta_path=args.meta, | |
130 outfile_params=args.outfile_params, | |
131 ) |