Mercurial > repos > bgruening > sklearn_data_preprocess
comparison pca.py @ 34:eb9da067ab26 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2afb24f3c81d625312186750a714d702363012b5"
author | bgruening |
---|---|
date | Fri, 02 Oct 2020 08:47:25 +0000 |
parents | |
children | 0e5fcf7ddc75 |
comparison
equal
deleted
inserted
replaced
33:826c3e68e7a9 | 34:eb9da067ab26 |
---|---|
1 import argparse | |
2 import numpy as np | |
3 from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA | |
4 from galaxy_ml.utils import read_columns | |
5 | |
6 def main(): | |
7 parser = argparse.ArgumentParser(description='RDKit screen') | |
8 parser.add_argument('-i', '--infile', | |
9 help="Input file") | |
10 parser.add_argument('--header', action='store_true', help="Include the header row or skip it") | |
11 parser.add_argument('-c', '--columns', type=str.lower, default='all', choices=['by_index_number', 'all_but_by_index_number',\ | |
12 'by_header_name', 'all_but_by_header_name', 'all_columns'], | |
13 help="Choose to select all columns, or exclude/include some") | |
14 parser.add_argument('-ci', '--column_indices', type=str.lower, | |
15 help="Choose to select all columns, or exclude/include some") | |
16 parser.add_argument('-n', '--number', nargs='?', type=int, default=None,\ | |
17 help="Number of components to keep. If not set, all components are kept") | |
18 parser.add_argument('--whiten', action='store_true', help="Whiten the components") | |
19 parser.add_argument('-t', '--pca_type', type=str.lower, default='classical', choices=['classical', 'incremental', 'kernel'], | |
20 help="Choose which flavour of PCA to use") | |
21 parser.add_argument('-s', '--svd_solver', type=str.lower, default='auto', choices=['auto', 'full', 'arpack', 'randomized'], | |
22 help="Choose the type of svd solver.") | |
23 parser.add_argument('-b', '--batch_size', nargs='?', type=int, default=None,\ | |
24 help="The number of samples to use for each batch") | |
25 parser.add_argument('-k', '--kernel', type=str.lower, default='linear',\ | |
26 choices=['linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'], | |
27 help="Choose the type of kernel.") | |
28 parser.add_argument('-g', '--gamma', nargs='?', type=float, default=None, | |
29 help='Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels') | |
30 parser.add_argument('-tol', '--tolerance', type=float, default=0.0, | |
31 help='Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack') | |
32 parser.add_argument('-mi', '--max_iter', nargs='?', type=int, default=None,\ | |
33 help="Maximum number of iterations for arpack") | |
34 parser.add_argument('-d', '--degree', type=int, default=3,\ | |
35 help="Degree for poly kernels. Ignored by other kernels") | |
36 parser.add_argument('-cf', '--coef0', type=float, default=1.0, | |
37 help='Independent term in poly and sigmoid kernels') | |
38 parser.add_argument('-e', '--eigen_solver', type=str.lower, default='auto', choices=['auto', 'dense', 'arpack'], | |
39 help="Choose the type of eigen solver.") | |
40 parser.add_argument('-o', '--outfile', | |
41 help="Base name for output file (no extension).") | |
42 args = parser.parse_args() | |
43 | |
44 usecols = None | |
45 cols = [] | |
46 pca_params = {} | |
47 | |
48 if args.columns == 'by_index_number' or args.columns == 'all_but_by_index_number': | |
49 usecols = [int(i) for i in args.column_indices.split(',')] | |
50 elif args.columns == 'by_header_name' or args.columns == 'all_but_by_header_name': | |
51 usecols = args.column_indices | |
52 | |
53 header = 'infer' if args.header else None | |
54 | |
55 pca_input = read_columns( | |
56 f=args.infile, | |
57 c=usecols, | |
58 c_option=args.columns, | |
59 sep='\t', | |
60 header=header, | |
61 parse_dates=True, | |
62 encoding=None, | |
63 index_col=None) | |
64 | |
65 pca_params.update({'n_components': args.number}) | |
66 | |
67 if args.pca_type == 'classical': | |
68 pca_params.update({'svd_solver': args.svd_solver, 'whiten': args.whiten}) | |
69 if args.svd_solver == 'arpack': | |
70 pca_params.update({'tol': args.tolerance}) | |
71 pca = PCA() | |
72 | |
73 elif args.pca_type == 'incremental': | |
74 pca_params.update({'batch_size': args.batch_size, 'whiten': args.whiten}) | |
75 pca = IncrementalPCA() | |
76 | |
77 elif args.pca_type == 'kernel': | |
78 pca_params.update({'kernel': args.kernel, 'eigen_solver': args.eigen_solver, 'gamma': args.gamma}) | |
79 | |
80 if args.kernel == 'poly': | |
81 pca_params.update({'degree': args.degree, 'coef0': args.coef0}) | |
82 elif args.kernel == 'sigmoid': | |
83 pca_params.update({'coef0': args.coef0}) | |
84 elif args.kernel == 'precomputed': | |
85 pca_input = np.dot(pca_input, pca_input.T) | |
86 | |
87 if args.eigen_solver == 'arpack': | |
88 pca_params.update({'tol': args.tolerance, 'max_iter': args.max_iter}) | |
89 | |
90 pca = KernelPCA() | |
91 | |
92 print(pca_params) | |
93 pca.set_params(**pca_params) | |
94 pca_output = pca.fit_transform(pca_input) | |
95 np.savetxt(fname=args.outfile, X=pca_output, fmt='%.4f', delimiter='\t') | |
96 | |
97 | |
98 if __name__ == "__main__": | |
99 main() |