Mercurial > repos > bgruening > sklearn_data_preprocess
diff train_test_split.py @ 29:66df2aa6cd6b draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:13:42 -0400 |
parents | |
children | 0e5fcf7ddc75 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/train_test_split.py Fri Nov 01 17:13:42 2019 -0400 @@ -0,0 +1,154 @@ +import argparse +import json +import pandas as pd +import warnings + +from galaxy_ml.model_validations import train_test_split +from galaxy_ml.utils import get_cv, read_columns + + +def _get_single_cv_split(params, array, infile_labels=None, + infile_groups=None): + """ output (train, test) subset from a cv splitter + + Parameters + ---------- + params : dict + Galaxy tool inputs + array : pandas DataFrame object + The target dataset to split + infile_labels : str + File path to dataset containing target values + infile_groups : str + File path to dataset containing group values + """ + y = None + groups = None + + nth_split = params['mode_selection']['nth_split'] + + # read groups + if infile_groups: + header = 'infer' if (params['mode_selection']['cv_selector'] + ['groups_selector']['header_g']) else None + column_option = (params['mode_selection']['cv_selector'] + ['groups_selector']['column_selector_options_g'] + ['selected_column_selector_option_g']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = (params['mode_selection']['cv_selector']['groups_selector'] + ['column_selector_options_g']['col_g']) + else: + c = None + + groups = read_columns(infile_groups, c=c, c_option=column_option, + sep='\t', header=header, parse_dates=True) + groups = groups.ravel() + + params['mode_selection']['cv_selector']['groups_selector'] = groups + + # read labels + if infile_labels: + target_input = (params['mode_selection'] + ['cv_selector'].pop('target_input')) + header = 'infer' if target_input['header1'] else None + col_index = target_input['col'][0] - 1 + df = pd.read_csv(infile_labels, sep='\t', header=header, + parse_dates=True) + y = df.iloc[:, col_index].values + + # construct the cv splitter object + splitter, groups = get_cv(params['mode_selection']['cv_selector']) + + total_n_splits = splitter.get_n_splits(array.values, y=y, groups=groups) + if nth_split > total_n_splits: + raise ValueError("Total number of splits is {}, but got `nth_split` " + "= {}".format(total_n_splits, nth_split)) + + i = 1 + for train_index, test_index in splitter.split(array.values, y=y, groups=groups): + # suppose nth_split >= 1 + if i == nth_split: + break + else: + i += 1 + + train = array.iloc[train_index, :] + test = array.iloc[test_index, :] + + return train, test + + +def main(inputs, infile_array, outfile_train, outfile_test, + infile_labels=None, infile_groups=None): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter + + infile_array : str + File paths of input arrays separated by comma + + infile_labels : str + File path to dataset containing labels + + infile_groups : str + File path to dataset containing groups + + outfile_train : str + File path to dataset containing train split + + outfile_test : str + File path to dataset containing test split + """ + warnings.simplefilter('ignore') + + with open(inputs, 'r') as param_handler: + params = json.load(param_handler) + + input_header = params['header0'] + header = 'infer' if input_header else None + array = pd.read_csv(infile_array, sep='\t', header=header, + parse_dates=True) + + # train test split + if params['mode_selection']['selected_mode'] == 'train_test_split': + options = params['mode_selection']['options'] + shuffle_selection = options.pop('shuffle_selection') + options['shuffle'] = shuffle_selection['shuffle'] + if infile_labels: + header = 'infer' if shuffle_selection['header1'] else None + col_index = shuffle_selection['col'][0] - 1 + df = pd.read_csv(infile_labels, sep='\t', header=header, + parse_dates=True) + labels = df.iloc[:, col_index].values + options['labels'] = labels + + train, test = train_test_split(array, **options) + + # cv splitter + else: + train, test = _get_single_cv_split(params, array, + infile_labels=infile_labels, + infile_groups=infile_groups) + + print("Input shape: %s" % repr(array.shape)) + print("Train shape: %s" % repr(train.shape)) + print("Test shape: %s" % repr(test.shape)) + train.to_csv(outfile_train, sep='\t', header=input_header, index=False) + test.to_csv(outfile_test, sep='\t', header=input_header, index=False) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-X", "--infile_array", dest="infile_array") + aparser.add_argument("-y", "--infile_labels", dest="infile_labels") + aparser.add_argument("-g", "--infile_groups", dest="infile_groups") + aparser.add_argument("-o", "--outfile_train", dest="outfile_train") + aparser.add_argument("-t", "--outfile_test", dest="outfile_test") + args = aparser.parse_args() + + main(args.inputs, args.infile_array, args.outfile_train, + args.outfile_test, args.infile_labels, args.infile_groups)