Mercurial > repos > bgruening > sklearn_data_preprocess
view train_test_split.py @ 29:66df2aa6cd6b draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
author | bgruening |
---|---|
date | Fri, 01 Nov 2019 17:13:42 -0400 |
parents | |
children | 0e5fcf7ddc75 |
line wrap: on
line source
import argparse import json import pandas as pd import warnings from galaxy_ml.model_validations import train_test_split from galaxy_ml.utils import get_cv, read_columns def _get_single_cv_split(params, array, infile_labels=None, infile_groups=None): """ output (train, test) subset from a cv splitter Parameters ---------- params : dict Galaxy tool inputs array : pandas DataFrame object The target dataset to split infile_labels : str File path to dataset containing target values infile_groups : str File path to dataset containing group values """ y = None groups = None nth_split = params['mode_selection']['nth_split'] # read groups if infile_groups: header = 'infer' if (params['mode_selection']['cv_selector'] ['groups_selector']['header_g']) else None column_option = (params['mode_selection']['cv_selector'] ['groups_selector']['column_selector_options_g'] ['selected_column_selector_option_g']) if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: c = (params['mode_selection']['cv_selector']['groups_selector'] ['column_selector_options_g']['col_g']) else: c = None groups = read_columns(infile_groups, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True) groups = groups.ravel() params['mode_selection']['cv_selector']['groups_selector'] = groups # read labels if infile_labels: target_input = (params['mode_selection'] ['cv_selector'].pop('target_input')) header = 'infer' if target_input['header1'] else None col_index = target_input['col'][0] - 1 df = pd.read_csv(infile_labels, sep='\t', header=header, parse_dates=True) y = df.iloc[:, col_index].values # construct the cv splitter object splitter, groups = get_cv(params['mode_selection']['cv_selector']) total_n_splits = splitter.get_n_splits(array.values, y=y, groups=groups) if nth_split > total_n_splits: raise ValueError("Total number of splits is {}, but got `nth_split` " "= {}".format(total_n_splits, nth_split)) i = 1 for train_index, test_index in splitter.split(array.values, y=y, groups=groups): # suppose nth_split >= 1 if i == nth_split: break else: i += 1 train = array.iloc[train_index, :] test = array.iloc[test_index, :] return train, test def main(inputs, infile_array, outfile_train, outfile_test, infile_labels=None, infile_groups=None): """ Parameter --------- inputs : str File path to galaxy tool parameter infile_array : str File paths of input arrays separated by comma infile_labels : str File path to dataset containing labels infile_groups : str File path to dataset containing groups outfile_train : str File path to dataset containing train split outfile_test : str File path to dataset containing test split """ warnings.simplefilter('ignore') with open(inputs, 'r') as param_handler: params = json.load(param_handler) input_header = params['header0'] header = 'infer' if input_header else None array = pd.read_csv(infile_array, sep='\t', header=header, parse_dates=True) # train test split if params['mode_selection']['selected_mode'] == 'train_test_split': options = params['mode_selection']['options'] shuffle_selection = options.pop('shuffle_selection') options['shuffle'] = shuffle_selection['shuffle'] if infile_labels: header = 'infer' if shuffle_selection['header1'] else None col_index = shuffle_selection['col'][0] - 1 df = pd.read_csv(infile_labels, sep='\t', header=header, parse_dates=True) labels = df.iloc[:, col_index].values options['labels'] = labels train, test = train_test_split(array, **options) # cv splitter else: train, test = _get_single_cv_split(params, array, infile_labels=infile_labels, infile_groups=infile_groups) print("Input shape: %s" % repr(array.shape)) print("Train shape: %s" % repr(train.shape)) print("Test shape: %s" % repr(test.shape)) train.to_csv(outfile_train, sep='\t', header=input_header, index=False) test.to_csv(outfile_test, sep='\t', header=input_header, index=False) if __name__ == '__main__': aparser = argparse.ArgumentParser() aparser.add_argument("-i", "--inputs", dest="inputs", required=True) aparser.add_argument("-X", "--infile_array", dest="infile_array") aparser.add_argument("-y", "--infile_labels", dest="infile_labels") aparser.add_argument("-g", "--infile_groups", dest="infile_groups") aparser.add_argument("-o", "--outfile_train", dest="outfile_train") aparser.add_argument("-t", "--outfile_test", dest="outfile_test") args = aparser.parse_args() main(args.inputs, args.infile_array, args.outfile_train, args.outfile_test, args.infile_labels, args.infile_groups)