Mercurial > repos > bgruening > sklearn_data_preprocess
view utils.py @ 19:f196d4715cfb draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit d00173591e4a783a4c1cb2664e4bb192ab5414f7
author | bgruening |
---|---|
date | Fri, 17 Aug 2018 12:28:58 -0400 |
parents | |
children | 2bda387c73e4 |
line wrap: on
line source
import sys import os import pandas import re import pickle import warnings import numpy as np import xgboost import scipy import sklearn import ast from asteval import Interpreter, make_symbol_table from sklearn import metrics, model_selection, ensemble, svm, linear_model, naive_bayes, tree, neighbors N_JOBS = int( os.environ.get('GALAXY_SLOTS', 1) ) def read_columns(f, c=None, c_option='by_index_number', return_df=False, **args): data = pandas.read_csv(f, **args) if c_option == 'by_index_number': cols = list(map(lambda x: x - 1, c)) data = data.iloc[:,cols] if c_option == 'all_but_by_index_number': cols = list(map(lambda x: x - 1, c)) data.drop(data.columns[cols], axis=1, inplace=True) if c_option == 'by_header_name': cols = [e.strip() for e in c.split(',')] data = data[cols] if c_option == 'all_but_by_header_name': cols = [e.strip() for e in c.split(',')] data.drop(cols, axis=1, inplace=True) y = data.values if return_df: return y, data else: return y return y ## generate an instance for one of sklearn.feature_selection classes def feature_selector(inputs): selector = inputs["selected_algorithm"] selector = getattr(sklearn.feature_selection, selector) options = inputs["options"] if inputs['selected_algorithm'] == 'SelectFromModel': if not options['threshold'] or options['threshold'] == 'None': options['threshold'] = None if inputs['model_inputter']['input_mode'] == 'prefitted': model_file = inputs['model_inputter']['fitted_estimator'] with open(model_file, 'rb') as model_handler: fitted_estimator = pickle.load(model_handler) new_selector = selector(fitted_estimator, prefit=True, **options) else: estimator_json = inputs['model_inputter']["estimator_selector"] estimator = get_estimator(estimator_json) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == 'RFE': estimator=get_estimator(inputs["estimator_selector"]) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == 'RFECV': options['scoring'] = get_scoring(options['scoring']) options['n_jobs'] = N_JOBS options['cv'] = get_cv( options['cv'].strip() ) estimator=get_estimator(inputs["estimator_selector"]) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == "VarianceThreshold": new_selector = selector(**options) else: score_func = inputs["score_func"] score_func = getattr(sklearn.feature_selection, score_func) new_selector = selector(score_func, **options) return new_selector def get_X_y(params, file1, file2): input_type = params["selected_tasks"]["selected_algorithms"]["input_options"]["selected_input"] if input_type=="tabular": header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header1"] else None column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["selected_column_selector_option"] if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["col1"] else: c = None X = read_columns( file1, c = c, c_option = column_option, sep='\t', header=header, parse_dates=True ) else: X = mmread(file1) header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["col2"] else: c = None y = read_columns( file2, c = c, c_option = column_option, sep='\t', header=header, parse_dates=True ) y=y.ravel() return X, y class SafeEval(Interpreter): def __init__(self, load_scipy=False, load_numpy=False): # File opening and other unneeded functions could be dropped unwanted = ['open', 'type', 'dir', 'id', 'str', 'repr'] # Allowed symbol table. Add more if needed. new_syms = { 'np_arange': getattr(np, 'arange'), 'ensemble_ExtraTreesClassifier': getattr(ensemble, 'ExtraTreesClassifier') } syms = make_symbol_table(use_numpy=False, **new_syms) if load_scipy: scipy_distributions = scipy.stats.distributions.__dict__ for key in scipy_distributions.keys(): if isinstance(scipy_distributions[key], (scipy.stats.rv_continuous, scipy.stats.rv_discrete)): syms['scipy_stats_' + key] = scipy_distributions[key] if load_numpy: from_numpy_random = ['beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', 'exponential', 'f', 'gamma', 'geometric', 'gumbel', 'hypergeometric', 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', 'normal', 'pareto', 'permutation', 'poisson', 'power', 'rand', 'randint', 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', 'standard_gamma', 'standard_normal', 'standard_t', 'triangular', 'uniform', 'vonmises', 'wald', 'weibull', 'zipf' ] for f in from_numpy_random: syms['np_random_' + f] = getattr(np.random, f) for key in unwanted: syms.pop(key, None) super(SafeEval, self).__init__( symtable=syms, use_numpy=False, minimal=False, no_if=True, no_for=True, no_while=True, no_try=True, no_functiondef=True, no_ifexp=True, no_listcomp=False, no_augassign=False, no_assert=True, no_delete=True, no_raise=True, no_print=True) def get_search_params(params_builder): search_params = {} safe_eval = SafeEval(load_scipy=True, load_numpy=True) for p in params_builder['param_set']: search_p = p['search_param_selector']['search_p'] if search_p.strip() == '': continue param_type = p['search_param_selector']['selected_param_type'] lst = search_p.split(":") assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." literal = lst[1].strip() ev = safe_eval(literal) if param_type == "final_estimator_p": search_params["estimator__" + lst[0].strip()] = ev else: search_params["preprocessing_" + param_type[5:6] + "__" + lst[0].strip()] = ev return search_params def get_estimator(estimator_json): estimator_module = estimator_json['selected_module'] estimator_cls = estimator_json['selected_estimator'] if estimator_module == "xgboost": cls = getattr(xgboost, estimator_cls) else: module = getattr(sklearn, estimator_module) cls = getattr(module, estimator_cls) estimator = cls() estimator_params = estimator_json['text_params'].strip() if estimator_params != "": try: params = safe_eval('dict(' + estimator_params + ')') except ValueError: sys.exit("Unsupported parameter input: `%s`" %estimator_params) estimator.set_params(**params) if 'n_jobs' in estimator.get_params(): estimator.set_params( n_jobs=N_JOBS ) return estimator def get_cv(literal): safe_eval = SafeEval() if literal == "": return None if literal.isdigit(): return int(literal) m = re.match(r'^(?P<method>\w+)\((?P<args>.*)\)$', literal) if m: my_class = getattr( model_selection, m.group('method') ) args = safe_eval( 'dict('+ m.group('args') + ')' ) return my_class( **args ) sys.exit("Unsupported CV input: %s" %literal) def get_scoring(scoring_json): def balanced_accuracy_score(y_true, y_pred): C = metrics.confusion_matrix(y_true, y_pred) with np.errstate(divide='ignore', invalid='ignore'): per_class = np.diag(C) / C.sum(axis=1) if np.any(np.isnan(per_class)): warnings.warn('y_pred contains classes not in y_true') per_class = per_class[~np.isnan(per_class)] score = np.mean(per_class) return score if scoring_json['primary_scoring'] == "default": return None my_scorers = metrics.SCORERS if 'balanced_accuracy' not in my_scorers: my_scorers['balanced_accuracy'] = metrics.make_scorer(balanced_accuracy_score) if scoring_json['secondary_scoring'] != 'None'\ and scoring_json['secondary_scoring'] != scoring_json['primary_scoring']: scoring = {} scoring['primary'] = my_scorers[ scoring_json['primary_scoring'] ] for scorer in scoring_json['secondary_scoring'].split(','): if scorer != scoring_json['primary_scoring']: scoring[scorer] = my_scorers[scorer] return scoring return my_scorers[ scoring_json['primary_scoring'] ]