Mercurial > repos > bgruening > sklearn_discriminant_classifier
comparison discriminant.xml @ 15:fb232caca397 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit f54ff2ba2f8e7542d68966ce5a6b17d7f624ac48
author | bgruening |
---|---|
date | Fri, 13 Jul 2018 03:56:21 -0400 |
parents | f46da2feb233 |
children | 98b632c407ae |
comparison
equal
deleted
inserted
replaced
14:6ffb5d3bfc08 | 15:fb232caca397 |
---|---|
24 | 24 |
25 @COLUMNS_FUNCTION@ | 25 @COLUMNS_FUNCTION@ |
26 @GET_X_y_FUNCTION@ | 26 @GET_X_y_FUNCTION@ |
27 | 27 |
28 input_json_path = sys.argv[1] | 28 input_json_path = sys.argv[1] |
29 params = json.load(open(input_json_path, "r")) | 29 with open(input_json_path, "r") as param_handler: |
30 | 30 params = json.load(param_handler) |
31 | 31 |
32 #if $selected_tasks.selected_task == "load": | 32 #if $selected_tasks.selected_task == "load": |
33 | 33 |
34 classifier_object = pickle.load(open("$infile_model", 'r')) | 34 with open("$infile_model", 'rb') as model_handler: |
35 classifier_object = pickle.load(model_handler) | |
35 | 36 |
36 header = 'infer' if params["selected_tasks"]["header"] else None | 37 header = 'infer' if params["selected_tasks"]["header"] else None |
37 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) | 38 data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False) |
38 prediction = classifier_object.predict(data) | 39 prediction = classifier_object.predict(data) |
39 prediction_df = pandas.DataFrame(prediction) | 40 prediction_df = pandas.DataFrame(prediction) |
48 selected_algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"] | 49 selected_algorithm = params["selected_tasks"]["selected_algorithms"]["selected_algorithm"] |
49 | 50 |
50 my_class = getattr(sklearn.discriminant_analysis, selected_algorithm) | 51 my_class = getattr(sklearn.discriminant_analysis, selected_algorithm) |
51 classifier_object = my_class(**options) | 52 classifier_object = my_class(**options) |
52 classifier_object.fit(X, y) | 53 classifier_object.fit(X, y) |
53 pickle.dump(classifier_object,open("$outfile_fit", 'w+'), pickle.HIGHEST_PROTOCOL) | 54 with open("$outfile_fit", 'wb') as out_handler: |
55 pickle.dump(classifier_object, out_handler, pickle.HIGHEST_PROTOCOL) | |
54 | 56 |
55 #end if | 57 #end if |
56 ]]> | 58 ]]> |
57 </configfile> | 59 </configfile> |
58 </configfiles> | 60 </configfiles> |