Mercurial > repos > bgruening > sklearn_discriminant_classifier
diff preprocessors.py @ 24:5552eda109bd draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ab963ec9498bd05d2fb2f24f75adb2fccae7958c
author | bgruening |
---|---|
date | Wed, 15 May 2019 07:39:54 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/preprocessors.py Wed May 15 07:39:54 2019 -0400 @@ -0,0 +1,184 @@ +""" +Z_RandomOverSampler +""" + +import imblearn +import numpy as np + +from collections import Counter +from imblearn.over_sampling.base import BaseOverSampler +from imblearn.over_sampling import RandomOverSampler +from imblearn.pipeline import Pipeline as imbPipeline +from imblearn.utils import check_target_type +from scipy import sparse +from sklearn.base import BaseEstimator, TransformerMixin +from sklearn.preprocessing.data import _handle_zeros_in_scale +from sklearn.utils import check_array, safe_indexing +from sklearn.utils.fixes import nanpercentile +from sklearn.utils.validation import (check_is_fitted, check_X_y, + FLOAT_DTYPES) + + +class Z_RandomOverSampler(BaseOverSampler): + + def __init__(self, sampling_strategy='auto', + return_indices=False, + random_state=None, + ratio=None, + negative_thres=0, + positive_thres=-1): + super(Z_RandomOverSampler, self).__init__( + sampling_strategy=sampling_strategy, ratio=ratio) + self.random_state = random_state + self.return_indices = return_indices + self.negative_thres = negative_thres + self.positive_thres = positive_thres + + @staticmethod + def _check_X_y(X, y): + y, binarize_y = check_target_type(y, indicate_one_vs_all=True) + X, y = check_X_y(X, y, accept_sparse=['csr', 'csc'], dtype=None) + return X, y, binarize_y + + def _fit_resample(self, X, y): + n_samples = X.shape[0] + + # convert y to z_score + y_z = (y - y.mean()) / y.std() + + index0 = np.arange(n_samples) + index_negative = index0[y_z > self.negative_thres] + index_positive = index0[y_z <= self.positive_thres] + index_unclassified = [x for x in index0 + if x not in index_negative + and x not in index_positive] + + y_z[index_negative] = 0 + y_z[index_positive] = 1 + y_z[index_unclassified] = -1 + + ros = RandomOverSampler( + sampling_strategy=self.sampling_strategy, + random_state=self.random_state, + ratio=self.ratio) + _, _ = ros.fit_resample(X, y_z) + sample_indices = ros.sample_indices_ + + print("Before sampler: %s. Total after: %s" + % (Counter(y_z), sample_indices.shape)) + + self.sample_indices_ = np.array(sample_indices) + + if self.return_indices: + return (safe_indexing(X, sample_indices), + safe_indexing(y, sample_indices), + sample_indices) + return (safe_indexing(X, sample_indices), + safe_indexing(y, sample_indices)) + + +def _get_quantiles(X, quantile_range): + """ + Calculate column percentiles for 2d array + + Parameters + ---------- + X : array-like, shape [n_samples, n_features] + """ + quantiles = [] + for feature_idx in range(X.shape[1]): + if sparse.issparse(X): + column_nnz_data = X.data[ + X.indptr[feature_idx]: X.indptr[feature_idx + 1]] + column_data = np.zeros(shape=X.shape[0], dtype=X.dtype) + column_data[:len(column_nnz_data)] = column_nnz_data + else: + column_data = X[:, feature_idx] + quantiles.append(nanpercentile(column_data, quantile_range)) + + quantiles = np.transpose(quantiles) + + return quantiles + + +class TDMScaler(BaseEstimator, TransformerMixin): + """ + Scale features using Training Distribution Matching (TDM) algorithm + + References + ---------- + .. [1] Thompson JA, Tan J and Greene CS (2016) Cross-platform + normalization of microarray and RNA-seq data for machine + learning applications. PeerJ 4, e1621. + """ + + def __init__(self, q_lower=25.0, q_upper=75.0, ): + self.q_lower = q_lower + self.q_upper = q_upper + + def fit(self, X, y=None): + """ + Parameters + ---------- + X : array-like, shape [n_samples, n_features] + """ + X = check_array(X, copy=True, estimator=self, dtype=FLOAT_DTYPES, + force_all_finite=True) + + if not 0 <= self.q_lower <= self.q_upper <= 100: + raise ValueError("Invalid quantile parameter values: " + "q_lower %s, q_upper: %s" + % (str(self.q_lower), str(self.q_upper))) + + # TODO sparse data + quantiles = nanpercentile(X, (self.q_lower, self.q_upper)) + iqr = quantiles[1] - quantiles[0] + + self.q_lower_ = quantiles[0] + self.q_upper_ = quantiles[1] + self.iqr_ = _handle_zeros_in_scale(iqr, copy=False) + + self.max_ = np.nanmax(X) + self.min_ = np.nanmin(X) + + return self + + def transform(self, X): + """ + Parameters + ---------- + X : {array-like, sparse matrix} + The data used to scale along the specified axis. + """ + check_is_fitted(self, 'iqr_', 'max_') + X = check_array(X, copy=True, estimator=self, dtype=FLOAT_DTYPES, + force_all_finite=True) + + # TODO sparse data + train_upper_scale = (self.max_ - self.q_upper_) / self.iqr_ + train_lower_scale = (self.q_lower_ - self.min_) / self.iqr_ + + test_quantiles = nanpercentile(X, (self.q_lower, self.q_upper)) + test_iqr = _handle_zeros_in_scale( + test_quantiles[1] - test_quantiles[0], copy=False) + + test_upper_bound = test_quantiles[1] + train_upper_scale * test_iqr + test_lower_bound = test_quantiles[0] - train_lower_scale * test_iqr + + test_min = np.nanmin(X) + if test_lower_bound < test_min: + test_lower_bound = test_min + + X[X > test_upper_bound] = test_upper_bound + X[X < test_lower_bound] = test_lower_bound + + X = (X - test_lower_bound) / (test_upper_bound - test_lower_bound)\ + * (self.max_ - self.min_) + self.min_ + + return X + + def inverse_transform(self, X): + """ + Scale the data back to the original state + """ + raise NotImplementedError("Inverse transformation is not implemented!")