Mercurial > repos > bgruening > sklearn_discriminant_classifier
diff discriminant.xml @ 41:d769d83ec796 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 13:14:12 +0000 |
parents | eeaf989f1024 |
children |
line wrap: on
line diff
--- a/discriminant.xml Thu Aug 11 08:53:29 2022 +0000 +++ b/discriminant.xml Wed Aug 09 13:14:12 2023 +0000 @@ -1,4 +1,4 @@ -<tool id="sklearn_discriminant_classifier" name="Discriminant Analysis" version="@VERSION@" profile="20.05"> +<tool id="sklearn_discriminant_classifier" name="Discriminant Analysis" version="@VERSION@" profile="@PROFILE@"> <description></description> <macros> <import>main_macros.xml</import> @@ -22,7 +22,8 @@ import sklearn.discriminant_analysis import sys -from galaxy_ml.utils import load_model, get_X_y +from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 +from galaxy_ml.utils import clean_params, get_X_y input_json_path = sys.argv[1] @@ -31,8 +32,8 @@ #if $selected_tasks.selected_task == "load": -with open("$infile_model", 'rb') as model_handler: - classifier_object = load_model(model_handler) +classifier_object = load_model_from_h5('$infile_model') +classifier_object = clean_params(classifier_object) header = 'infer' if params["selected_tasks"]["header"] else None data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=header, index_col=None, parse_dates=True, encoding=None) @@ -51,15 +52,14 @@ my_class = getattr(sklearn.discriminant_analysis, selected_algorithm) classifier_object = my_class(**options) classifier_object.fit(X, y) -with open("$outfile_fit", 'wb') as out_handler: - pickle.dump(classifier_object, out_handler, pickle.HIGHEST_PROTOCOL) +dump_model_to_h5(classifier_object, '$outfile_fit') #end if ]]> </configfile> </configfiles> <inputs> - <expand macro="sl_Conditional" model="zip"> + <expand macro="sl_Conditional" model="h5mlm"> <param name="selected_algorithm" type="select" label="Classifier type"> <option value="LinearDiscriminantAnalysis" selected="true">Linear Discriminant Classifier</option> <option value="QuadraticDiscriminantAnalysis">Quadratic Discriminant Classifier</option> @@ -95,8 +95,6 @@ <test> <param name="infile1" value="train.tabular" ftype="tabular" /> <param name="infile2" value="train.tabular" ftype="tabular" /> - <param name="header1" value="True" /> - <param name="header2" value="True" /> <param name="col1" value="1,2,3,4" /> <param name="col2" value="5" /> <param name="selected_task" value="train" /> @@ -108,8 +106,6 @@ <test> <param name="infile1" value="train.tabular" ftype="tabular" /> <param name="infile2" value="train.tabular" ftype="tabular" /> - <param name="header1" value="True" /> - <param name="header2" value="True" /> <param name="col1" value="1,2,3,4" /> <param name="col2" value="5" /> <param name="selected_task" value="train" /> @@ -120,8 +116,6 @@ <test> <param name="infile1" value="train.tabular" ftype="tabular" /> <param name="infile2" value="train.tabular" ftype="tabular" /> - <param name="header1" value="True" /> - <param name="header2" value="True" /> <param name="col1" value="1,2,3,4" /> <param name="col2" value="5" /> <param name="selected_task" value="train" /> @@ -129,23 +123,20 @@ <output name="outfile_fit" file="qda_model01" compare="sim_size" delta="1" /> </test> <test> - <param name="infile_model" value="lda_model01" ftype="zip" /> + <param name="infile_model" value="lda_model01" ftype="h5mlm" /> <param name="infile_data" value="test.tabular" ftype="tabular" /> - <param name="header" value="True" /> <param name="selected_task" value="load" /> <output name="outfile_predict" file="lda_prediction_result01.tabular" /> </test> <test> - <param name="infile_model" value="lda_model02" ftype="zip" /> + <param name="infile_model" value="lda_model02" ftype="h5mlm" /> <param name="infile_data" value="test.tabular" ftype="tabular" /> - <param name="header" value="True" /> <param name="selected_task" value="load" /> <output name="outfile_predict" file="lda_prediction_result02.tabular" /> </test> <test> - <param name="infile_model" value="qda_model01" ftype="zip" /> + <param name="infile_model" value="qda_model01" ftype="h5mlm" /> <param name="infile_data" value="test.tabular" ftype="tabular" /> - <param name="header" value="True" /> <param name="selected_task" value="load" /> <output name="outfile_predict" file="qda_prediction_result01.tabular" /> </test>