Mercurial > repos > bgruening > sklearn_discriminant_classifier
view utils.py @ 21:56ddc98c484e draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2a058459e6daf0486871f93845f00fdb4a4eaca1
author | bgruening |
---|---|
date | Sat, 29 Sep 2018 07:38:46 -0400 |
parents | f051d64eb12e |
children | 75bcb7c19fcf |
line wrap: on
line source
import sys import os import pandas import re import pickle import warnings import numpy as np import xgboost import scipy import sklearn from asteval import Interpreter, make_symbol_table from sklearn import (cluster, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) class SafePickler(pickle.Unpickler): """ Used to safely deserialize scikit-learn model objects serialized by cPickle.dump Usage: eg.: SafePickler.load(pickled_file_object) """ def find_class(self, module, name): bad_names = ('and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise', 'return', 'try', 'system', 'while', 'with', 'True', 'False', 'None', 'eval', 'execfile', '__import__', '__package__', '__subclasses__', '__bases__', '__globals__', '__code__', '__closure__', '__func__', '__self__', '__module__', '__dict__', '__class__', '__call__', '__get__', '__getattribute__', '__subclasshook__', '__new__', '__init__', 'func_globals', 'func_code', 'func_closure', 'im_class', 'im_func', 'im_self', 'gi_code', 'gi_frame', '__asteval__', 'f_locals', '__mro__') good_names = ['copy_reg._reconstructor', '__builtin__.object'] if re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', name): fullname = module + '.' + name if (fullname in good_names)\ or ( ( module.startswith('sklearn.') or module.startswith('xgboost.') or module.startswith('skrebate.') or module.startswith('numpy.') or module == 'numpy' ) and (name not in bad_names) ): # TODO: replace with a whitelist checker if fullname not in sk_whitelist['SK_NAMES'] + sk_whitelist['SKR_NAMES'] + sk_whitelist['XGB_NAMES'] + sk_whitelist['NUMPY_NAMES'] + good_names: print("Warning: global %s is not in pickler whitelist yet and will loss support soon. Contact tool author or leave a message at github.com" % fullname) mod = sys.modules[module] return getattr(mod, name) raise pickle.UnpicklingError("global '%s' is forbidden" % fullname) def load_model(file): return SafePickler(file).load() def read_columns(f, c=None, c_option='by_index_number', return_df=False, **args): data = pandas.read_csv(f, **args) if c_option == 'by_index_number': cols = list(map(lambda x: x - 1, c)) data = data.iloc[:, cols] if c_option == 'all_but_by_index_number': cols = list(map(lambda x: x - 1, c)) data.drop(data.columns[cols], axis=1, inplace=True) if c_option == 'by_header_name': cols = [e.strip() for e in c.split(',')] data = data[cols] if c_option == 'all_but_by_header_name': cols = [e.strip() for e in c.split(',')] data.drop(cols, axis=1, inplace=True) y = data.values if return_df: return y, data else: return y return y ## generate an instance for one of sklearn.feature_selection classes def feature_selector(inputs): selector = inputs["selected_algorithm"] selector = getattr(sklearn.feature_selection, selector) options = inputs["options"] if inputs['selected_algorithm'] == 'SelectFromModel': if not options['threshold'] or options['threshold'] == 'None': options['threshold'] = None if inputs['model_inputter']['input_mode'] == 'prefitted': model_file = inputs['model_inputter']['fitted_estimator'] with open(model_file, 'rb') as model_handler: fitted_estimator = load_model(model_handler) new_selector = selector(fitted_estimator, prefit=True, **options) else: estimator_json = inputs['model_inputter']["estimator_selector"] estimator = get_estimator(estimator_json) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == 'RFE': estimator = get_estimator(inputs["estimator_selector"]) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == 'RFECV': options['scoring'] = get_scoring(options['scoring']) options['n_jobs'] = N_JOBS options['cv'] = get_cv(options['cv'].strip()) estimator = get_estimator(inputs["estimator_selector"]) new_selector = selector(estimator, **options) elif inputs['selected_algorithm'] == "VarianceThreshold": new_selector = selector(**options) else: score_func = inputs["score_func"] score_func = getattr(sklearn.feature_selection, score_func) new_selector = selector(score_func, **options) return new_selector def get_X_y(params, file1, file2): input_type = params["selected_tasks"]["selected_algorithms"]["input_options"]["selected_input"] if input_type == "tabular": header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header1"] else None column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["selected_column_selector_option"] if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_1"]["col1"] else: c = None X = read_columns( file1, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True ) else: X = mmread(file1) header = 'infer' if params["selected_tasks"]["selected_algorithms"]["input_options"]["header2"] else None column_option = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: c = params["selected_tasks"]["selected_algorithms"]["input_options"]["column_selector_options_2"]["col2"] else: c = None y = read_columns( file2, c=c, c_option=column_option, sep='\t', header=header, parse_dates=True ) y = y.ravel() return X, y class SafeEval(Interpreter): def __init__(self, load_scipy=False, load_numpy=False): # File opening and other unneeded functions could be dropped unwanted = ['open', 'type', 'dir', 'id', 'str', 'repr'] # Allowed symbol table. Add more if needed. new_syms = { 'np_arange': getattr(np, 'arange'), 'ensemble_ExtraTreesClassifier': getattr(ensemble, 'ExtraTreesClassifier') } syms = make_symbol_table(use_numpy=False, **new_syms) if load_scipy: scipy_distributions = scipy.stats.distributions.__dict__ for k, v in scipy_distributions.items(): if isinstance(v, (scipy.stats.rv_continuous, scipy.stats.rv_discrete)): syms['scipy_stats_' + k] = v if load_numpy: from_numpy_random = ['beta', 'binomial', 'bytes', 'chisquare', 'choice', 'dirichlet', 'division', 'exponential', 'f', 'gamma', 'geometric', 'gumbel', 'hypergeometric', 'laplace', 'logistic', 'lognormal', 'logseries', 'mtrand', 'multinomial', 'multivariate_normal', 'negative_binomial', 'noncentral_chisquare', 'noncentral_f', 'normal', 'pareto', 'permutation', 'poisson', 'power', 'rand', 'randint', 'randn', 'random', 'random_integers', 'random_sample', 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', 'shuffle', 'standard_cauchy', 'standard_exponential', 'standard_gamma', 'standard_normal', 'standard_t', 'triangular', 'uniform', 'vonmises', 'wald', 'weibull', 'zipf'] for f in from_numpy_random: syms['np_random_' + f] = getattr(np.random, f) for key in unwanted: syms.pop(key, None) super(SafeEval, self).__init__(symtable=syms, use_numpy=False, minimal=False, no_if=True, no_for=True, no_while=True, no_try=True, no_functiondef=True, no_ifexp=True, no_listcomp=False, no_augassign=False, no_assert=True, no_delete=True, no_raise=True, no_print=True) def get_search_params(params_builder): search_params = {} safe_eval = SafeEval(load_scipy=True, load_numpy=True) for p in params_builder['param_set']: search_p = p['search_param_selector']['search_p'] if search_p.strip() == '': continue param_type = p['search_param_selector']['selected_param_type'] lst = search_p.split(":") assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." literal = lst[1].strip() ev = safe_eval(literal) if param_type == "final_estimator_p": search_params["estimator__" + lst[0].strip()] = ev else: search_params["preprocessing_" + param_type[5:6] + "__" + lst[0].strip()] = ev return search_params def get_estimator(estimator_json): estimator_module = estimator_json['selected_module'] estimator_cls = estimator_json['selected_estimator'] if estimator_module == "xgboost": cls = getattr(xgboost, estimator_cls) else: module = getattr(sklearn, estimator_module) cls = getattr(module, estimator_cls) estimator = cls() estimator_params = estimator_json['text_params'].strip() if estimator_params != "": try: params = safe_eval('dict(' + estimator_params + ')') except ValueError: sys.exit("Unsupported parameter input: `%s`" % estimator_params) estimator.set_params(**params) if 'n_jobs' in estimator.get_params(): estimator.set_params(n_jobs=N_JOBS) return estimator def get_cv(literal): safe_eval = SafeEval() if literal == "": return None if literal.isdigit(): return int(literal) m = re.match(r'^(?P<method>\w+)\((?P<args>.*)\)$', literal) if m: my_class = getattr(model_selection, m.group('method')) args = safe_eval('dict('+ m.group('args') + ')') return my_class(**args) sys.exit("Unsupported CV input: %s" % literal) def get_scoring(scoring_json): def balanced_accuracy_score(y_true, y_pred): C = metrics.confusion_matrix(y_true, y_pred) with np.errstate(divide='ignore', invalid='ignore'): per_class = np.diag(C) / C.sum(axis=1) if np.any(np.isnan(per_class)): warnings.warn('y_pred contains classes not in y_true') per_class = per_class[~np.isnan(per_class)] score = np.mean(per_class) return score if scoring_json['primary_scoring'] == "default": return None my_scorers = metrics.SCORERS if 'balanced_accuracy' not in my_scorers: my_scorers['balanced_accuracy'] = metrics.make_scorer(balanced_accuracy_score) if scoring_json['secondary_scoring'] != 'None'\ and scoring_json['secondary_scoring'] != scoring_json['primary_scoring']: scoring = {} scoring['primary'] = my_scorers[scoring_json['primary_scoring']] for scorer in scoring_json['secondary_scoring'].split(','): if scorer != scoring_json['primary_scoring']: scoring[scorer] = my_scorers[scorer] return scoring return my_scorers[scoring_json['primary_scoring']]