Mercurial > repos > bgruening > sklearn_ensemble
comparison ensemble.xml @ 23:39ae276e75d9 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 57f4407e278a615f47a377a3328782b1d8e0b54d
author | bgruening |
---|---|
date | Sun, 30 Dec 2018 01:56:11 -0500 |
parents | 2e69c6ca6e91 |
children | e94395c672bd |
comparison
equal
deleted
inserted
replaced
22:2e69c6ca6e91 | 23:39ae276e75d9 |
---|---|
98 <option value="GradientBoostingRegressor">Gradient Boosting Regressor</option> | 98 <option value="GradientBoostingRegressor">Gradient Boosting Regressor</option> |
99 </param> | 99 </param> |
100 <when value="RandomForestClassifier"> | 100 <when value="RandomForestClassifier"> |
101 <expand macro="sl_mixed_input"/> | 101 <expand macro="sl_mixed_input"/> |
102 <section name="options" title="Advanced Options" expanded="False"> | 102 <section name="options" title="Advanced Options" expanded="False"> |
103 <expand macro="n_estimators"/> | 103 <expand macro="n_estimators" default_value="100"/> |
104 <expand macro="criterion"/> | 104 <expand macro="criterion"/> |
105 <expand macro="max_features"/> | 105 <expand macro="max_features"/> |
106 <expand macro="max_depth"/> | 106 <expand macro="max_depth"/> |
107 <expand macro="min_samples_split"/> | 107 <expand macro="min_samples_split"/> |
108 <expand macro="min_samples_leaf"/> | 108 <expand macro="min_samples_leaf"/> |
156 </section> | 156 </section> |
157 </when> | 157 </when> |
158 <when value="RandomForestRegressor"> | 158 <when value="RandomForestRegressor"> |
159 <expand macro="sl_mixed_input"/> | 159 <expand macro="sl_mixed_input"/> |
160 <section name="options" title="Advanced Options" expanded="False"> | 160 <section name="options" title="Advanced Options" expanded="False"> |
161 <expand macro="n_estimators"/> | 161 <expand macro="n_estimators" default_value="100"/> |
162 <expand macro="criterion2"/> | 162 <expand macro="criterion2"/> |
163 <expand macro="max_features"/> | 163 <expand macro="max_features"/> |
164 <expand macro="max_depth"/> | 164 <expand macro="max_depth"/> |
165 <expand macro="min_samples_split"/> | 165 <expand macro="min_samples_split"/> |
166 <expand macro="min_samples_leaf"/> | 166 <expand macro="min_samples_leaf"/> |
230 <param name="col1" value="1,2,3,4"/> | 230 <param name="col1" value="1,2,3,4"/> |
231 <param name="col2" value="5"/> | 231 <param name="col2" value="5"/> |
232 <param name="selected_task" value="train"/> | 232 <param name="selected_task" value="train"/> |
233 <param name="selected_algorithm" value="RandomForestClassifier"/> | 233 <param name="selected_algorithm" value="RandomForestClassifier"/> |
234 <param name="random_state" value="10"/> | 234 <param name="random_state" value="10"/> |
235 <output name="outfile_fit" file="rfc_model01" compare="sim_size" delta="500"/> | 235 <output name="outfile_fit" file="rfc_model01" compare="sim_size" delta="5"/> |
236 </test> | 236 </test> |
237 <test> | 237 <test> |
238 <param name="infile_model" value="rfc_model01" ftype="zip"/> | 238 <param name="infile_model" value="rfc_model01" ftype="zip"/> |
239 <param name="infile_data" value="test.tabular" ftype="tabular"/> | 239 <param name="infile_data" value="test.tabular" ftype="tabular"/> |
240 <param name="selected_task" value="load"/> | 240 <param name="selected_task" value="load"/> |
241 <output name="outfile_predict" file="rfc_result01" compare="sim_size" delta="500"/> | 241 <output name="outfile_predict" file="rfc_result01"/> |
242 </test> | 242 </test> |
243 <test> | 243 <test> |
244 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 244 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> |
245 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 245 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> |
246 <param name="col1" value="1,2,3,4,5"/> | 246 <param name="col1" value="1,2,3,4,5"/> |
247 <param name="col2" value="6"/> | 247 <param name="col2" value="6"/> |
248 <param name="selected_task" value="train"/> | 248 <param name="selected_task" value="train"/> |
249 <param name="selected_algorithm" value="RandomForestRegressor"/> | 249 <param name="selected_algorithm" value="RandomForestRegressor"/> |
250 <param name="random_state" value="10"/> | 250 <param name="random_state" value="10"/> |
251 <output name="outfile_fit" file="rfr_model01" compare="sim_size" delta="500"/> | 251 <output name="outfile_fit" file="rfr_model01" compare="sim_size" delta="5"/> |
252 </test> | 252 </test> |
253 <test> | 253 <test> |
254 <param name="infile_model" value="rfr_model01" ftype="zip"/> | 254 <param name="infile_model" value="rfr_model01" ftype="zip"/> |
255 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> | 255 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> |
256 <param name="selected_task" value="load"/> | 256 <param name="selected_task" value="load"/> |
257 <output name="outfile_predict" file="rfr_result01" compare="sim_size" delta="500"/> | 257 <output name="outfile_predict" file="rfr_result01"/> |
258 </test> | 258 </test> |
259 <test> | 259 <test> |
260 <param name="infile1" value="regression_X.tabular" ftype="tabular"/> | 260 <param name="infile1" value="regression_X.tabular" ftype="tabular"/> |
261 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> | 261 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> |
262 <param name="header1" value="True"/> | 262 <param name="header1" value="True"/> |
266 <param name="selected_task" value="train"/> | 266 <param name="selected_task" value="train"/> |
267 <param name="selected_algorithm" value="GradientBoostingRegressor"/> | 267 <param name="selected_algorithm" value="GradientBoostingRegressor"/> |
268 <param name="max_features" value="number_input"/> | 268 <param name="max_features" value="number_input"/> |
269 <param name="num_max_features" value="0.5"/> | 269 <param name="num_max_features" value="0.5"/> |
270 <param name="random_state" value="42"/> | 270 <param name="random_state" value="42"/> |
271 <output name="outfile_fit" file="gbr_model01" compare="sim_size" delta="500"/> | 271 <output name="outfile_fit" file="gbr_model01" compare="sim_size" delta="5"/> |
272 </test> | 272 </test> |
273 <test> | 273 <test> |
274 <param name="infile_model" value="gbr_model01" ftype="zip"/> | 274 <param name="infile_model" value="gbr_model01" ftype="zip"/> |
275 <param name="infile_data" value="regression_test_X.tabular" ftype="tabular"/> | 275 <param name="infile_data" value="regression_test_X.tabular" ftype="tabular"/> |
276 <param name="selected_task" value="load"/> | 276 <param name="selected_task" value="load"/> |
277 <param name="header" value="True"/> | 277 <param name="header" value="True"/> |
278 <output name="outfile_predict" file="gbr_prediction_result01.tabular" compare="sim_size" delta="500"/> | 278 <output name="outfile_predict" file="gbr_prediction_result01.tabular"/> |
279 </test> | 279 </test> |
280 <test> | 280 <test> |
281 <param name="infile1" value="train.tabular" ftype="tabular"/> | 281 <param name="infile1" value="train.tabular" ftype="tabular"/> |
282 <param name="infile2" value="train.tabular" ftype="tabular"/> | 282 <param name="infile2" value="train.tabular" ftype="tabular"/> |
283 <param name="col1" value="1,2,3,4"/> | 283 <param name="col1" value="1,2,3,4"/> |
284 <param name="col2" value="5"/> | 284 <param name="col2" value="5"/> |
285 <param name="selected_task" value="train"/> | 285 <param name="selected_task" value="train"/> |
286 <param name="selected_algorithm" value="GradientBoostingClassifier"/> | 286 <param name="selected_algorithm" value="GradientBoostingClassifier"/> |
287 <output name="outfile_fit" file="gbc_model01" compare="sim_size" delta="500"/> | 287 <output name="outfile_fit" file="gbc_model01" compare="sim_size" delta="5"/> |
288 </test> | 288 </test> |
289 <test> | 289 <test> |
290 <param name="infile_model" value="gbc_model01" ftype="zip"/> | 290 <param name="infile_model" value="gbc_model01" ftype="zip"/> |
291 <param name="infile_data" value="test.tabular" ftype="tabular"/> | 291 <param name="infile_data" value="test.tabular" ftype="tabular"/> |
292 <param name="selected_task" value="load"/> | 292 <param name="selected_task" value="load"/> |
293 <output name="outfile_predict" file="gbc_result01" compare="sim_size" delta="500"/> | 293 <output name="outfile_predict" file="gbc_result01"/> |
294 </test> | 294 </test> |
295 <test> | 295 <test> |
296 <param name="infile1" value="train.tabular" ftype="tabular"/> | 296 <param name="infile1" value="train.tabular" ftype="tabular"/> |
297 <param name="infile2" value="train.tabular" ftype="tabular"/> | 297 <param name="infile2" value="train.tabular" ftype="tabular"/> |
298 <param name="col1" value="1,2,3,4"/> | 298 <param name="col1" value="1,2,3,4"/> |
299 <param name="col2" value="5"/> | 299 <param name="col2" value="5"/> |
300 <param name="selected_task" value="train"/> | 300 <param name="selected_task" value="train"/> |
301 <param name="selected_algorithm" value="AdaBoostClassifier"/> | 301 <param name="selected_algorithm" value="AdaBoostClassifier"/> |
302 <param name="random_state" value="10"/> | 302 <param name="random_state" value="10"/> |
303 <output name="outfile_fit" file="abc_model01" compare="sim_size" delta="500"/> | 303 <output name="outfile_fit" file="abc_model01" compare="sim_size" delta="5"/> |
304 </test> | 304 </test> |
305 <test> | 305 <test> |
306 <param name="infile_model" value="abc_model01" ftype="zip"/> | 306 <param name="infile_model" value="abc_model01" ftype="zip"/> |
307 <param name="infile_data" value="test.tabular" ftype="tabular"/> | 307 <param name="infile_data" value="test.tabular" ftype="tabular"/> |
308 <param name="selected_task" value="load"/> | 308 <param name="selected_task" value="load"/> |
309 <output name="outfile_predict" file="abc_result01" compare="sim_size" delta="500"/> | 309 <output name="outfile_predict" file="abc_result01"/> |
310 </test> | 310 </test> |
311 <test> | 311 <test> |
312 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> | 312 <param name="infile1" value="regression_train.tabular" ftype="tabular"/> |
313 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> | 313 <param name="infile2" value="regression_train.tabular" ftype="tabular"/> |
314 <param name="col1" value="1,2,3,4,5"/> | 314 <param name="col1" value="1,2,3,4,5"/> |
315 <param name="col2" value="6"/> | 315 <param name="col2" value="6"/> |
316 <param name="selected_task" value="train"/> | 316 <param name="selected_task" value="train"/> |
317 <param name="selected_algorithm" value="AdaBoostRegressor"/> | 317 <param name="selected_algorithm" value="AdaBoostRegressor"/> |
318 <param name="random_state" value="10"/> | 318 <param name="random_state" value="10"/> |
319 <output name="outfile_fit" file="abr_model01" compare="sim_size" delta="500"/> | 319 <output name="outfile_fit" file="abr_model01" compare="sim_size" delta="5"/> |
320 </test> | 320 </test> |
321 <test> | 321 <test> |
322 <param name="infile_model" value="abr_model01" ftype="zip"/> | 322 <param name="infile_model" value="abr_model01" ftype="zip"/> |
323 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> | 323 <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> |
324 <param name="selected_task" value="load"/> | 324 <param name="selected_task" value="load"/> |
325 <output name="outfile_predict" file="abr_result01" compare="sim_size" delta="500"/> | 325 <output name="outfile_predict" file="abr_result01"/> |
326 </test> | 326 </test> |
327 </tests> | 327 </tests> |
328 <help><![CDATA[ | 328 <help><![CDATA[ |
329 ***What it does*** | 329 ***What it does*** |
330 The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. This tool offers two sets of ensemble algorithms for classification and regression: random forests and ADA boosting which are based on sklearn.ensemble library from Scikit-learn. Here you can find out about the input, output and methods presented in the tools. For information about ensemble methods and parameters settings please refer to `Scikit-learn ensemble`_. | 330 The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning algorithm in order to improve generalizability / robustness over a single estimator. This tool offers two sets of ensemble algorithms for classification and regression: random forests and ADA boosting which are based on sklearn.ensemble library from Scikit-learn. Here you can find out about the input, output and methods presented in the tools. For information about ensemble methods and parameters settings please refer to `Scikit-learn ensemble`_. |