Mercurial > repos > bgruening > sklearn_ensemble
comparison search_model_validation.py @ 26:dde0f1654d18 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:23:21 -0400 |
parents | e94395c672bd |
children | 47d4baa183b2 |
comparison
equal
deleted
inserted
replaced
25:360330a867f0 | 26:dde0f1654d18 |
---|---|
1 import argparse | 1 import argparse |
2 import collections | 2 import collections |
3 import imblearn | 3 import imblearn |
4 import joblib | |
4 import json | 5 import json |
5 import numpy as np | 6 import numpy as np |
6 import pandas | 7 import pandas as pd |
7 import pickle | 8 import pickle |
8 import skrebate | 9 import skrebate |
9 import sklearn | 10 import sklearn |
10 import sys | 11 import sys |
11 import xgboost | 12 import xgboost |
12 import warnings | 13 import warnings |
13 import iraps_classifier | |
14 import model_validations | |
15 import preprocessors | |
16 import feature_selectors | |
17 from imblearn import under_sampling, over_sampling, combine | 14 from imblearn import under_sampling, over_sampling, combine |
18 from scipy.io import mmread | 15 from scipy.io import mmread |
19 from mlxtend import classifier, regressor | 16 from mlxtend import classifier, regressor |
17 from sklearn.base import clone | |
20 from sklearn import (cluster, compose, decomposition, ensemble, | 18 from sklearn import (cluster, compose, decomposition, ensemble, |
21 feature_extraction, feature_selection, | 19 feature_extraction, feature_selection, |
22 gaussian_process, kernel_approximation, metrics, | 20 gaussian_process, kernel_approximation, metrics, |
23 model_selection, naive_bayes, neighbors, | 21 model_selection, naive_bayes, neighbors, |
24 pipeline, preprocessing, svm, linear_model, | 22 pipeline, preprocessing, svm, linear_model, |
25 tree, discriminant_analysis) | 23 tree, discriminant_analysis) |
26 from sklearn.exceptions import FitFailedWarning | 24 from sklearn.exceptions import FitFailedWarning |
27 from sklearn.externals import joblib | 25 from sklearn.model_selection._validation import _score, cross_validate |
28 from sklearn.model_selection._validation import _score | 26 from sklearn.model_selection import _search, _validation |
29 | 27 |
30 from utils import (SafeEval, get_cv, get_scoring, get_X_y, | 28 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, |
31 load_model, read_columns) | 29 read_columns, try_get_attr, get_module) |
32 from model_validations import train_test_split | 30 |
33 | 31 |
32 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
33 setattr(_search, '_fit_and_score', _fit_and_score) | |
34 setattr(_validation, '_fit_and_score', _fit_and_score) | |
34 | 35 |
35 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | 36 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) |
36 CACHE_DIR = './cached' | 37 CACHE_DIR = './cached' |
37 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', 'steps', | 38 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', |
38 'nthread', 'verbose') | 39 'nthread', 'callbacks') |
40 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
41 'CSVLogger', 'None') | |
39 | 42 |
40 | 43 |
41 def _eval_search_params(params_builder): | 44 def _eval_search_params(params_builder): |
42 search_params = {} | 45 search_params = {} |
43 | 46 |
60 # Have `:` before search list, asks for estimator evaluatio | 63 # Have `:` before search list, asks for estimator evaluatio |
61 safe_eval_es = SafeEval(load_estimators=True) | 64 safe_eval_es = SafeEval(load_estimators=True) |
62 search_list = search_list[1:].strip() | 65 search_list = search_list[1:].strip() |
63 # TODO maybe add regular express check | 66 # TODO maybe add regular express check |
64 ev = safe_eval_es(search_list) | 67 ev = safe_eval_es(search_list) |
65 preprocessors = ( | 68 preprocessings = ( |
66 preprocessing.StandardScaler(), preprocessing.Binarizer(), | 69 preprocessing.StandardScaler(), preprocessing.Binarizer(), |
67 preprocessing.Imputer(), preprocessing.MaxAbsScaler(), | 70 preprocessing.MaxAbsScaler(), |
68 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | 71 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), |
69 preprocessing.PolynomialFeatures(), | 72 preprocessing.PolynomialFeatures(), |
70 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | 73 preprocessing.RobustScaler(), feature_selection.SelectKBest(), |
71 feature_selection.GenericUnivariateSelect(), | 74 feature_selection.GenericUnivariateSelect(), |
72 feature_selection.SelectPercentile(), | 75 feature_selection.SelectPercentile(), |
131 newlist = [] | 134 newlist = [] |
132 for obj in ev: | 135 for obj in ev: |
133 if obj is None: | 136 if obj is None: |
134 newlist.append(None) | 137 newlist.append(None) |
135 elif obj == 'all_0': | 138 elif obj == 'all_0': |
136 newlist.extend(preprocessors[0:36]) | 139 newlist.extend(preprocessings[0:35]) |
137 elif obj == 'sk_prep_all': # no KernalCenter() | 140 elif obj == 'sk_prep_all': # no KernalCenter() |
138 newlist.extend(preprocessors[0:8]) | 141 newlist.extend(preprocessings[0:7]) |
139 elif obj == 'fs_all': | 142 elif obj == 'fs_all': |
140 newlist.extend(preprocessors[8:15]) | 143 newlist.extend(preprocessings[7:14]) |
141 elif obj == 'decomp_all': | 144 elif obj == 'decomp_all': |
142 newlist.extend(preprocessors[15:26]) | 145 newlist.extend(preprocessings[14:25]) |
143 elif obj == 'k_appr_all': | 146 elif obj == 'k_appr_all': |
144 newlist.extend(preprocessors[26:30]) | 147 newlist.extend(preprocessings[25:29]) |
145 elif obj == 'reb_all': | 148 elif obj == 'reb_all': |
146 newlist.extend(preprocessors[31:36]) | 149 newlist.extend(preprocessings[30:35]) |
147 elif obj == 'imb_all': | 150 elif obj == 'imb_all': |
148 newlist.extend(preprocessors[36:55]) | 151 newlist.extend(preprocessings[35:54]) |
149 elif type(obj) is int and -1 < obj < len(preprocessors): | 152 elif type(obj) is int and -1 < obj < len(preprocessings): |
150 newlist.append(preprocessors[obj]) | 153 newlist.append(preprocessings[obj]) |
151 elif hasattr(obj, 'get_params'): # user uploaded object | 154 elif hasattr(obj, 'get_params'): # user uploaded object |
152 if 'n_jobs' in obj.get_params(): | 155 if 'n_jobs' in obj.get_params(): |
153 newlist.append(obj.set_params(n_jobs=N_JOBS)) | 156 newlist.append(obj.set_params(n_jobs=N_JOBS)) |
154 else: | 157 else: |
155 newlist.append(obj) | 158 newlist.append(obj) |
160 | 163 |
161 return search_params | 164 return search_params |
162 | 165 |
163 | 166 |
164 def main(inputs, infile_estimator, infile1, infile2, | 167 def main(inputs, infile_estimator, infile1, infile2, |
165 outfile_result, outfile_object=None, groups=None): | 168 outfile_result, outfile_object=None, |
169 outfile_weights=None, groups=None, | |
170 ref_seq=None, intervals=None, targets=None, | |
171 fasta_path=None): | |
166 """ | 172 """ |
167 Parameter | 173 Parameter |
168 --------- | 174 --------- |
169 inputs : str | 175 inputs : str |
170 File path to galaxy tool parameter | 176 File path to galaxy tool parameter |
182 File path to save the results, either cv_results or test result | 188 File path to save the results, either cv_results or test result |
183 | 189 |
184 outfile_object : str, optional | 190 outfile_object : str, optional |
185 File path to save searchCV object | 191 File path to save searchCV object |
186 | 192 |
193 outfile_weights : str, optional | |
194 File path to save model weights | |
195 | |
187 groups : str | 196 groups : str |
188 File path to dataset containing groups labels | 197 File path to dataset containing groups labels |
198 | |
199 ref_seq : str | |
200 File path to dataset containing genome sequence file | |
201 | |
202 intervals : str | |
203 File path to dataset containing interval file | |
204 | |
205 targets : str | |
206 File path to dataset compressed target bed file | |
207 | |
208 fasta_path : str | |
209 File path to dataset containing fasta file | |
189 """ | 210 """ |
190 | |
191 warnings.simplefilter('ignore') | 211 warnings.simplefilter('ignore') |
192 | 212 |
193 with open(inputs, 'r') as param_handler: | 213 with open(inputs, 'r') as param_handler: |
194 params = json.load(param_handler) | 214 params = json.load(param_handler) |
195 if groups: | |
196 (params['search_schemes']['options']['cv_selector'] | |
197 ['groups_selector']['infile_g']) = groups | |
198 | 215 |
199 params_builder = params['search_schemes']['search_params_builder'] | 216 params_builder = params['search_schemes']['search_params_builder'] |
200 | 217 |
218 with open(infile_estimator, 'rb') as estimator_handler: | |
219 estimator = load_model(estimator_handler) | |
220 estimator_params = estimator.get_params() | |
221 | |
222 # store read dataframe object | |
223 loaded_df = {} | |
224 | |
201 input_type = params['input_options']['selected_input'] | 225 input_type = params['input_options']['selected_input'] |
226 # tabular input | |
202 if input_type == 'tabular': | 227 if input_type == 'tabular': |
203 header = 'infer' if params['input_options']['header1'] else None | 228 header = 'infer' if params['input_options']['header1'] else None |
204 column_option = (params['input_options']['column_selector_options_1'] | 229 column_option = (params['input_options']['column_selector_options_1'] |
205 ['selected_column_selector_option']) | 230 ['selected_column_selector_option']) |
206 if column_option in ['by_index_number', 'all_but_by_index_number', | 231 if column_option in ['by_index_number', 'all_but_by_index_number', |
207 'by_header_name', 'all_but_by_header_name']: | 232 'by_header_name', 'all_but_by_header_name']: |
208 c = params['input_options']['column_selector_options_1']['col1'] | 233 c = params['input_options']['column_selector_options_1']['col1'] |
209 else: | 234 else: |
210 c = None | 235 c = None |
211 X = read_columns( | 236 |
212 infile1, | 237 df_key = infile1 + repr(header) |
213 c=c, | 238 df = pd.read_csv(infile1, sep='\t', header=header, |
214 c_option=column_option, | 239 parse_dates=True) |
215 sep='\t', | 240 loaded_df[df_key] = df |
216 header=header, | 241 |
217 parse_dates=True).astype(float) | 242 X = read_columns(df, c=c, c_option=column_option).astype(float) |
218 else: | 243 # sparse input |
244 elif input_type == 'sparse': | |
219 X = mmread(open(infile1, 'r')) | 245 X = mmread(open(infile1, 'r')) |
220 | 246 |
247 # fasta_file input | |
248 elif input_type == 'seq_fasta': | |
249 pyfaidx = get_module('pyfaidx') | |
250 sequences = pyfaidx.Fasta(fasta_path) | |
251 n_seqs = len(sequences.keys()) | |
252 X = np.arange(n_seqs)[:, np.newaxis] | |
253 for param in estimator_params.keys(): | |
254 if param.endswith('fasta_path'): | |
255 estimator.set_params( | |
256 **{param: fasta_path}) | |
257 break | |
258 else: | |
259 raise ValueError( | |
260 "The selected estimator doesn't support " | |
261 "fasta file input! Please consider using " | |
262 "KerasGBatchClassifier with " | |
263 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
264 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
265 "in pipeline!") | |
266 | |
267 elif input_type == 'refseq_and_interval': | |
268 path_params = { | |
269 'data_batch_generator__ref_genome_path': ref_seq, | |
270 'data_batch_generator__intervals_path': intervals, | |
271 'data_batch_generator__target_path': targets | |
272 } | |
273 estimator.set_params(**path_params) | |
274 n_intervals = sum(1 for line in open(intervals)) | |
275 X = np.arange(n_intervals)[:, np.newaxis] | |
276 | |
277 # Get target y | |
221 header = 'infer' if params['input_options']['header2'] else None | 278 header = 'infer' if params['input_options']['header2'] else None |
222 column_option = (params['input_options']['column_selector_options_2'] | 279 column_option = (params['input_options']['column_selector_options_2'] |
223 ['selected_column_selector_option2']) | 280 ['selected_column_selector_option2']) |
224 if column_option in ['by_index_number', 'all_but_by_index_number', | 281 if column_option in ['by_index_number', 'all_but_by_index_number', |
225 'by_header_name', 'all_but_by_header_name']: | 282 'by_header_name', 'all_but_by_header_name']: |
226 c = params['input_options']['column_selector_options_2']['col2'] | 283 c = params['input_options']['column_selector_options_2']['col2'] |
227 else: | 284 else: |
228 c = None | 285 c = None |
286 | |
287 df_key = infile2 + repr(header) | |
288 if df_key in loaded_df: | |
289 infile2 = loaded_df[df_key] | |
290 else: | |
291 infile2 = pd.read_csv(infile2, sep='\t', | |
292 header=header, parse_dates=True) | |
293 loaded_df[df_key] = infile2 | |
294 | |
229 y = read_columns( | 295 y = read_columns( |
230 infile2, | 296 infile2, |
231 c=c, | 297 c=c, |
232 c_option=column_option, | 298 c_option=column_option, |
233 sep='\t', | 299 sep='\t', |
234 header=header, | 300 header=header, |
235 parse_dates=True) | 301 parse_dates=True) |
236 y = y.ravel() | 302 if len(y.shape) == 2 and y.shape[1] == 1: |
303 y = y.ravel() | |
304 if input_type == 'refseq_and_interval': | |
305 estimator.set_params( | |
306 data_batch_generator__features=y.ravel().tolist()) | |
307 y = None | |
308 # end y | |
237 | 309 |
238 optimizer = params['search_schemes']['selected_search_scheme'] | 310 optimizer = params['search_schemes']['selected_search_scheme'] |
239 optimizer = getattr(model_selection, optimizer) | 311 optimizer = getattr(model_selection, optimizer) |
240 | 312 |
313 # handle gridsearchcv options | |
241 options = params['search_schemes']['options'] | 314 options = params['search_schemes']['options'] |
315 | |
316 if groups: | |
317 header = 'infer' if (options['cv_selector']['groups_selector'] | |
318 ['header_g']) else None | |
319 column_option = (options['cv_selector']['groups_selector'] | |
320 ['column_selector_options_g'] | |
321 ['selected_column_selector_option_g']) | |
322 if column_option in ['by_index_number', 'all_but_by_index_number', | |
323 'by_header_name', 'all_but_by_header_name']: | |
324 c = (options['cv_selector']['groups_selector'] | |
325 ['column_selector_options_g']['col_g']) | |
326 else: | |
327 c = None | |
328 | |
329 df_key = groups + repr(header) | |
330 if df_key in loaded_df: | |
331 groups = loaded_df[df_key] | |
332 | |
333 groups = read_columns( | |
334 groups, | |
335 c=c, | |
336 c_option=column_option, | |
337 sep='\t', | |
338 header=header, | |
339 parse_dates=True) | |
340 groups = groups.ravel() | |
341 options['cv_selector']['groups_selector'] = groups | |
242 | 342 |
243 splitter, groups = get_cv(options.pop('cv_selector')) | 343 splitter, groups = get_cv(options.pop('cv_selector')) |
244 options['cv'] = splitter | 344 options['cv'] = splitter |
245 options['n_jobs'] = N_JOBS | 345 options['n_jobs'] = N_JOBS |
246 primary_scoring = options['scoring']['primary_scoring'] | 346 primary_scoring = options['scoring']['primary_scoring'] |
252 if options['refit'] and isinstance(options['scoring'], dict): | 352 if options['refit'] and isinstance(options['scoring'], dict): |
253 options['refit'] = primary_scoring | 353 options['refit'] = primary_scoring |
254 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | 354 if 'pre_dispatch' in options and options['pre_dispatch'] == '': |
255 options['pre_dispatch'] = None | 355 options['pre_dispatch'] = None |
256 | 356 |
257 with open(infile_estimator, 'rb') as estimator_handler: | 357 # del loaded_df |
258 estimator = load_model(estimator_handler) | 358 del loaded_df |
259 | 359 |
360 # handle memory | |
260 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 361 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
261 # cache iraps_core fits could increase search speed significantly | 362 # cache iraps_core fits could increase search speed significantly |
262 if estimator.__class__.__name__ == 'IRAPSClassifier': | 363 if estimator.__class__.__name__ == 'IRAPSClassifier': |
263 estimator.set_params(memory=memory) | 364 estimator.set_params(memory=memory) |
264 else: | 365 else: |
265 for p, v in estimator.get_params().items(): | 366 # For iraps buried in pipeline |
367 for p, v in estimator_params.items(): | |
266 if p.endswith('memory'): | 368 if p.endswith('memory'): |
369 # for case of `__irapsclassifier__memory` | |
267 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | 370 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): |
268 # cache iraps_core fits could increase search | 371 # cache iraps_core fits could increase search |
269 # speed significantly | 372 # speed significantly |
270 new_params = {p: memory} | 373 new_params = {p: memory} |
271 estimator.set_params(**new_params) | 374 estimator.set_params(**new_params) |
375 # security reason, we don't want memory being | |
376 # modified unexpectedly | |
272 elif v: | 377 elif v: |
273 new_params = {p, None} | 378 new_params = {p, None} |
274 estimator.set_params(**new_params) | 379 estimator.set_params(**new_params) |
380 # For now, 1 CPU is suggested for iprasclassifier | |
275 elif p.endswith('n_jobs'): | 381 elif p.endswith('n_jobs'): |
276 new_params = {p: 1} | 382 new_params = {p: 1} |
277 estimator.set_params(**new_params) | 383 estimator.set_params(**new_params) |
384 # for security reason, types of callbacks are limited | |
385 elif p.endswith('callbacks'): | |
386 for cb in v: | |
387 cb_type = cb['callback_selection']['callback_type'] | |
388 if cb_type not in ALLOWED_CALLBACKS: | |
389 raise ValueError( | |
390 "Prohibited callback type: %s!" % cb_type) | |
278 | 391 |
279 param_grid = _eval_search_params(params_builder) | 392 param_grid = _eval_search_params(params_builder) |
280 searcher = optimizer(estimator, param_grid, **options) | 393 searcher = optimizer(estimator, param_grid, **options) |
281 | 394 |
282 # do train_test_split | 395 # do nested split |
283 do_train_test_split = params['train_test_split'].pop('do_split') | 396 split_mode = params['outer_split'].pop('split_mode') |
284 if do_train_test_split == 'yes': | 397 # nested CV, outer cv using cross_validate |
285 # make sure refit is choosen | 398 if split_mode == 'nested_cv': |
286 if not options['refit']: | 399 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) |
287 raise ValueError("Refit must be `True` for shuffle splitting!") | 400 |
288 split_options = params['train_test_split'] | 401 if options['error_score'] == 'raise': |
289 | 402 rval = cross_validate( |
290 # splits | 403 searcher, X, y, scoring=options['scoring'], |
291 if split_options['shuffle'] == 'stratified': | 404 cv=outer_cv, n_jobs=N_JOBS, verbose=0, |
292 split_options['labels'] = y | 405 error_score=options['error_score']) |
293 X, X_test, y, y_test = train_test_split(X, y, **split_options) | 406 else: |
294 elif split_options['shuffle'] == 'group': | 407 warnings.simplefilter('always', FitFailedWarning) |
295 if not groups: | 408 with warnings.catch_warnings(record=True) as w: |
296 raise ValueError("No group based CV option was " | 409 try: |
297 "choosen for group shuffle!") | 410 rval = cross_validate( |
298 split_options['labels'] = groups | 411 searcher, X, y, |
299 X, X_test, y, y_test, groups, _ =\ | 412 scoring=options['scoring'], |
300 train_test_split(X, y, **split_options) | 413 cv=outer_cv, n_jobs=N_JOBS, |
301 else: | 414 verbose=0, |
302 if split_options['shuffle'] == 'None': | 415 error_score=options['error_score']) |
303 split_options['shuffle'] = None | 416 except ValueError: |
304 X, X_test, y, y_test =\ | 417 pass |
305 train_test_split(X, y, **split_options) | 418 for warning in w: |
306 # end train_test_split | 419 print(repr(warning.message)) |
307 | 420 |
308 if options['error_score'] == 'raise': | 421 keys = list(rval.keys()) |
309 searcher.fit(X, y, groups=groups) | 422 for k in keys: |
423 if k.startswith('test'): | |
424 rval['mean_' + k] = np.mean(rval[k]) | |
425 rval['std_' + k] = np.std(rval[k]) | |
426 if k.endswith('time'): | |
427 rval.pop(k) | |
428 rval = pd.DataFrame(rval) | |
429 rval = rval[sorted(rval.columns)] | |
430 rval.to_csv(path_or_buf=outfile_result, sep='\t', | |
431 header=True, index=False) | |
310 else: | 432 else: |
311 warnings.simplefilter('always', FitFailedWarning) | 433 if split_mode == 'train_test_split': |
312 with warnings.catch_warnings(record=True) as w: | 434 train_test_split = try_get_attr( |
313 try: | 435 'galaxy_ml.model_validations', 'train_test_split') |
314 searcher.fit(X, y, groups=groups) | 436 # make sure refit is choosen |
315 except ValueError: | 437 # this could be True for sklearn models, but not the case for |
316 pass | 438 # deep learning models |
317 for warning in w: | 439 if not options['refit'] and \ |
318 print(repr(warning.message)) | 440 not all(hasattr(estimator, attr) |
319 | 441 for attr in ('config', 'model_type')): |
320 if do_train_test_split == 'no': | 442 warnings.warn("Refit is change to `True` for nested " |
321 # save results | 443 "validation!") |
322 cv_results = pandas.DataFrame(searcher.cv_results_) | 444 setattr(searcher, 'refit', True) |
323 cv_results = cv_results[sorted(cv_results.columns)] | 445 split_options = params['outer_split'] |
324 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | 446 |
325 header=True, index=False) | 447 # splits |
326 | 448 if split_options['shuffle'] == 'stratified': |
327 # output test result using best_estimator_ | 449 split_options['labels'] = y |
328 else: | 450 X, X_test, y, y_test = train_test_split(X, y, **split_options) |
329 best_estimator_ = searcher.best_estimator_ | 451 elif split_options['shuffle'] == 'group': |
330 if isinstance(options['scoring'], collections.Mapping): | 452 if groups is None: |
331 is_multimetric = True | 453 raise ValueError("No group based CV option was " |
332 else: | 454 "choosen for group shuffle!") |
333 is_multimetric = False | 455 split_options['labels'] = groups |
334 | 456 if y is None: |
335 test_score = _score(best_estimator_, X_test, | 457 X, X_test, groups, _ =\ |
336 y_test, options['scoring'], | 458 train_test_split(X, groups, **split_options) |
337 is_multimetric=is_multimetric) | 459 else: |
338 if not is_multimetric: | 460 X, X_test, y, y_test, groups, _ =\ |
339 test_score = {primary_scoring: test_score} | 461 train_test_split(X, y, groups, **split_options) |
340 for key, value in test_score.items(): | 462 else: |
341 test_score[key] = [value] | 463 if split_options['shuffle'] == 'None': |
342 result_df = pandas.DataFrame(test_score) | 464 split_options['shuffle'] = None |
343 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | 465 X, X_test, y, y_test =\ |
344 header=True, index=False) | 466 train_test_split(X, y, **split_options) |
467 # end train_test_split | |
468 | |
469 # shared by both train_test_split and non-split | |
470 if options['error_score'] == 'raise': | |
471 searcher.fit(X, y, groups=groups) | |
472 else: | |
473 warnings.simplefilter('always', FitFailedWarning) | |
474 with warnings.catch_warnings(record=True) as w: | |
475 try: | |
476 searcher.fit(X, y, groups=groups) | |
477 except ValueError: | |
478 pass | |
479 for warning in w: | |
480 print(repr(warning.message)) | |
481 | |
482 # no outer split | |
483 if split_mode == 'no': | |
484 # save results | |
485 cv_results = pd.DataFrame(searcher.cv_results_) | |
486 cv_results = cv_results[sorted(cv_results.columns)] | |
487 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
488 header=True, index=False) | |
489 | |
490 # train_test_split, output test result using best_estimator_ | |
491 # or rebuild the trained estimator using weights if applicable. | |
492 else: | |
493 scorer_ = searcher.scorer_ | |
494 if isinstance(scorer_, collections.Mapping): | |
495 is_multimetric = True | |
496 else: | |
497 is_multimetric = False | |
498 | |
499 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
500 if not best_estimator_: | |
501 raise ValueError("GridSearchCV object has no " | |
502 "`best_estimator_` when `refit`=False!") | |
503 | |
504 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier' \ | |
505 and hasattr(estimator.data_batch_generator, 'target_path'): | |
506 test_score = best_estimator_.evaluate( | |
507 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
508 else: | |
509 test_score = _score(best_estimator_, X_test, | |
510 y_test, scorer_, | |
511 is_multimetric=is_multimetric) | |
512 | |
513 if not is_multimetric: | |
514 test_score = {primary_scoring: test_score} | |
515 for key, value in test_score.items(): | |
516 test_score[key] = [value] | |
517 result_df = pd.DataFrame(test_score) | |
518 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | |
519 header=True, index=False) | |
345 | 520 |
346 memory.clear(warn=False) | 521 memory.clear(warn=False) |
347 | 522 |
348 if outfile_object: | 523 if outfile_object: |
524 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
525 if not best_estimator_: | |
526 warnings.warn("GridSearchCV object has no attribute " | |
527 "'best_estimator_', because either it's " | |
528 "nested gridsearch or `refit` is False!") | |
529 return | |
530 | |
531 main_est = best_estimator_ | |
532 if isinstance(best_estimator_, pipeline.Pipeline): | |
533 main_est = best_estimator_.steps[-1][-1] | |
534 | |
535 if hasattr(main_est, 'model_') \ | |
536 and hasattr(main_est, 'save_weights'): | |
537 if outfile_weights: | |
538 main_est.save_weights(outfile_weights) | |
539 del main_est.model_ | |
540 del main_est.fit_params | |
541 del main_est.model_class_ | |
542 del main_est.validation_data | |
543 if getattr(main_est, 'data_generator_', None): | |
544 del main_est.data_generator_ | |
545 del main_est.data_batch_generator | |
546 | |
349 with open(outfile_object, 'wb') as output_handler: | 547 with open(outfile_object, 'wb') as output_handler: |
350 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) | 548 pickle.dump(best_estimator_, output_handler, |
549 pickle.HIGHEST_PROTOCOL) | |
351 | 550 |
352 | 551 |
353 if __name__ == '__main__': | 552 if __name__ == '__main__': |
354 aparser = argparse.ArgumentParser() | 553 aparser = argparse.ArgumentParser() |
355 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 554 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
356 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 555 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
357 aparser.add_argument("-X", "--infile1", dest="infile1") | 556 aparser.add_argument("-X", "--infile1", dest="infile1") |
358 aparser.add_argument("-y", "--infile2", dest="infile2") | 557 aparser.add_argument("-y", "--infile2", dest="infile2") |
359 aparser.add_argument("-r", "--outfile_result", dest="outfile_result") | 558 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") |
360 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | 559 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") |
560 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
361 aparser.add_argument("-g", "--groups", dest="groups") | 561 aparser.add_argument("-g", "--groups", dest="groups") |
562 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
563 aparser.add_argument("-b", "--intervals", dest="intervals") | |
564 aparser.add_argument("-t", "--targets", dest="targets") | |
565 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
362 args = aparser.parse_args() | 566 args = aparser.parse_args() |
363 | 567 |
364 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 568 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, |
365 args.outfile_result, outfile_object=args.outfile_object, | 569 args.outfile_result, outfile_object=args.outfile_object, |
366 groups=args.groups) | 570 outfile_weights=args.outfile_weights, groups=args.groups, |
571 ref_seq=args.ref_seq, intervals=args.intervals, | |
572 targets=args.targets, fasta_path=args.fasta_path) |