Mercurial > repos > bgruening > sklearn_ensemble
diff search_model_validation.py @ 23:39ae276e75d9 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 57f4407e278a615f47a377a3328782b1d8e0b54d
author | bgruening |
---|---|
date | Sun, 30 Dec 2018 01:56:11 -0500 |
parents | |
children | e94395c672bd |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/search_model_validation.py Sun Dec 30 01:56:11 2018 -0500 @@ -0,0 +1,234 @@ +import imblearn +import json +import numpy as np +import os +import pandas +import pickle +import skrebate +import sklearn +import sys +import xgboost +import warnings +from imblearn import under_sampling, over_sampling, combine +from imblearn.pipeline import Pipeline as imbPipeline +from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, + feature_selection, gaussian_process, kernel_approximation, metrics, + model_selection, naive_bayes, neighbors, pipeline, preprocessing, + svm, linear_model, tree, discriminant_analysis) +from sklearn.exceptions import FitFailedWarning +from sklearn.externals import joblib +from utils import get_cv, get_scoring, get_X_y, load_model, read_columns, SafeEval + + +N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) + + +def get_search_params(params_builder): + search_params = {} + safe_eval = SafeEval(load_scipy=True, load_numpy=True) + safe_eval_es = SafeEval(load_estimators=True) + + for p in params_builder['param_set']: + search_p = p['search_param_selector']['search_p'] + if search_p.strip() == '': + continue + param_type = p['search_param_selector']['selected_param_type'] + + lst = search_p.split(':') + assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." + literal = lst[1].strip() + param_name = lst[0].strip() + if param_name: + if param_name.lower() == 'n_jobs': + sys.exit("Parameter `%s` is invalid for search." %param_name) + elif not param_name.endswith('-'): + ev = safe_eval(literal) + if param_type == 'final_estimator_p': + search_params['estimator__' + param_name] = ev + else: + search_params['preprocessing_' + param_type[5:6] + '__' + param_name] = ev + else: + # only for estimator eval, add `-` to the end of param + #TODO maybe add regular express check + ev = safe_eval_es(literal) + for obj in ev: + if 'n_jobs' in obj.get_params(): + obj.set_params( n_jobs=N_JOBS ) + if param_type == 'final_estimator_p': + search_params['estimator__' + param_name[:-1]] = ev + else: + search_params['preprocessing_' + param_type[5:6] + '__' + param_name[:-1]] = ev + elif param_type != 'final_estimator_p': + #TODO regular express check ? + ev = safe_eval_es(literal) + preprocessors = [preprocessing.StandardScaler(), preprocessing.Binarizer(), preprocessing.Imputer(), + preprocessing.MaxAbsScaler(), preprocessing.Normalizer(), preprocessing.MinMaxScaler(), + preprocessing.PolynomialFeatures(),preprocessing.RobustScaler(), + feature_selection.SelectKBest(), feature_selection.GenericUnivariateSelect(), + feature_selection.SelectPercentile(), feature_selection.SelectFpr(), feature_selection.SelectFdr(), + feature_selection.SelectFwe(), feature_selection.VarianceThreshold(), + decomposition.FactorAnalysis(random_state=0), decomposition.FastICA(random_state=0), decomposition.IncrementalPCA(), + decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), + decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), + decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.NMF(random_state=0), + decomposition.PCA(random_state=0), decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), + decomposition.TruncatedSVD(random_state=0), + kernel_approximation.Nystroem(random_state=0), kernel_approximation.RBFSampler(random_state=0), + kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.SkewedChi2Sampler(random_state=0), + cluster.FeatureAgglomeration(), + skrebate.ReliefF(n_jobs=N_JOBS), skrebate.SURF(n_jobs=N_JOBS), skrebate.SURFstar(n_jobs=N_JOBS), + skrebate.MultiSURF(n_jobs=N_JOBS), skrebate.MultiSURFstar(n_jobs=N_JOBS), + imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.RandomUnderSampler(random_state=0), + imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.RandomOverSampler(random_state=0), + imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), + imblearn.combine.SMOTEENN(random_state=0), imblearn.combine.SMOTETomek(random_state=0)] + newlist = [] + for obj in ev: + if obj is None: + newlist.append(None) + elif obj == 'all_0': + newlist.extend(preprocessors[0:36]) + elif obj == 'sk_prep_all': # no KernalCenter() + newlist.extend(preprocessors[0:8]) + elif obj == 'fs_all': + newlist.extend(preprocessors[8:15]) + elif obj == 'decomp_all': + newlist.extend(preprocessors[15:26]) + elif obj == 'k_appr_all': + newlist.extend(preprocessors[26:30]) + elif obj == 'reb_all': + newlist.extend(preprocessors[31:36]) + elif obj == 'imb_all': + newlist.extend(preprocessors[36:55]) + elif type(obj) is int and -1 < obj < len(preprocessors): + newlist.append(preprocessors[obj]) + elif hasattr(obj, 'get_params'): # user object + if 'n_jobs' in obj.get_params(): + newlist.append( obj.set_params(n_jobs=N_JOBS) ) + else: + newlist.append(obj) + else: + sys.exit("Unsupported preprocessor type: %r" %(obj)) + search_params['preprocessing_' + param_type[5:6]] = newlist + else: + sys.exit("Parameter name of the final estimator can't be skipped!") + + return search_params + + +if __name__ == '__main__': + + warnings.simplefilter('ignore') + + input_json_path = sys.argv[1] + with open(input_json_path, 'r') as param_handler: + params = json.load(param_handler) + + infile_pipeline = sys.argv[2] + infile1 = sys.argv[3] + infile2 = sys.argv[4] + outfile_result = sys.argv[5] + if len(sys.argv) > 6: + outfile_estimator = sys.argv[6] + else: + outfile_estimator = None + + params_builder = params['search_schemes']['search_params_builder'] + + input_type = params['input_options']['selected_input'] + if input_type == 'tabular': + header = 'infer' if params['input_options']['header1'] else None + column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] + if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: + c = params['input_options']['column_selector_options_1']['col1'] + else: + c = None + X = read_columns( + infile1, + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True + ) + else: + X = mmread(open(infile1, 'r')) + + header = 'infer' if params['input_options']['header2'] else None + column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] + if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: + c = params['input_options']['column_selector_options_2']['col2'] + else: + c = None + y = read_columns( + infile2, + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True + ) + y = y.ravel() + + optimizer = params['search_schemes']['selected_search_scheme'] + optimizer = getattr(model_selection, optimizer) + + options = params['search_schemes']['options'] + splitter, groups = get_cv(options.pop('cv_selector')) + if groups is None: + options['cv'] = splitter + elif groups == '': + options['cv'] = list( splitter.split(X, y, groups=None) ) + else: + options['cv'] = list( splitter.split(X, y, groups=groups) ) + options['n_jobs'] = N_JOBS + primary_scoring = options['scoring']['primary_scoring'] + options['scoring'] = get_scoring(options['scoring']) + if options['error_score']: + options['error_score'] = 'raise' + else: + options['error_score'] = np.NaN + if options['refit'] and isinstance(options['scoring'], dict): + options['refit'] = 'primary' + if 'pre_dispatch' in options and options['pre_dispatch'] == '': + options['pre_dispatch'] = None + + with open(infile_pipeline, 'rb') as pipeline_handler: + pipeline = load_model(pipeline_handler) + + search_params = get_search_params(params_builder) + searcher = optimizer(pipeline, search_params, **options) + + if options['error_score'] == 'raise': + searcher.fit(X, y) + else: + warnings.simplefilter('always', FitFailedWarning) + with warnings.catch_warnings(record=True) as w: + try: + searcher.fit(X, y) + except ValueError: + pass + for warning in w: + print(repr(warning.message)) + + cv_result = pandas.DataFrame(searcher.cv_results_) + cv_result.rename(inplace=True, columns={'mean_test_primary': 'mean_test_'+primary_scoring, 'rank_test_primary': 'rank_test_'+primary_scoring}) + cv_result.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) + + if outfile_estimator: + with open(outfile_estimator, 'wb') as output_handler: + pickle.dump(searcher.best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL)