Mercurial > repos > bgruening > sklearn_ensemble
diff search_model_validation.py @ 24:e94395c672bd draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author | bgruening |
---|---|
date | Tue, 14 May 2019 18:15:12 -0400 |
parents | 39ae276e75d9 |
children | dde0f1654d18 |
line wrap: on
line diff
--- a/search_model_validation.py Sun Dec 30 01:56:11 2018 -0500 +++ b/search_model_validation.py Tue May 14 18:15:12 2019 -0400 @@ -1,7 +1,8 @@ +import argparse +import collections import imblearn import json import numpy as np -import os import pandas import pickle import skrebate @@ -9,93 +10,124 @@ import sys import xgboost import warnings +import iraps_classifier +import model_validations +import preprocessors +import feature_selectors from imblearn import under_sampling, over_sampling, combine -from imblearn.pipeline import Pipeline as imbPipeline -from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, - feature_selection, gaussian_process, kernel_approximation, metrics, - model_selection, naive_bayes, neighbors, pipeline, preprocessing, - svm, linear_model, tree, discriminant_analysis) +from scipy.io import mmread +from mlxtend import classifier, regressor +from sklearn import (cluster, compose, decomposition, ensemble, + feature_extraction, feature_selection, + gaussian_process, kernel_approximation, metrics, + model_selection, naive_bayes, neighbors, + pipeline, preprocessing, svm, linear_model, + tree, discriminant_analysis) from sklearn.exceptions import FitFailedWarning from sklearn.externals import joblib -from utils import get_cv, get_scoring, get_X_y, load_model, read_columns, SafeEval +from sklearn.model_selection._validation import _score + +from utils import (SafeEval, get_cv, get_scoring, get_X_y, + load_model, read_columns) +from model_validations import train_test_split -N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) +N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) +CACHE_DIR = './cached' +NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', 'steps', + 'nthread', 'verbose') -def get_search_params(params_builder): +def _eval_search_params(params_builder): search_params = {} - safe_eval = SafeEval(load_scipy=True, load_numpy=True) - safe_eval_es = SafeEval(load_estimators=True) for p in params_builder['param_set']: - search_p = p['search_param_selector']['search_p'] - if search_p.strip() == '': + search_list = p['sp_list'].strip() + if search_list == '': continue - param_type = p['search_param_selector']['selected_param_type'] + + param_name = p['sp_name'] + if param_name.lower().endswith(NON_SEARCHABLE): + print("Warning: `%s` is not eligible for search and was " + "omitted!" % param_name) + continue - lst = search_p.split(':') - assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." - literal = lst[1].strip() - param_name = lst[0].strip() - if param_name: - if param_name.lower() == 'n_jobs': - sys.exit("Parameter `%s` is invalid for search." %param_name) - elif not param_name.endswith('-'): - ev = safe_eval(literal) - if param_type == 'final_estimator_p': - search_params['estimator__' + param_name] = ev - else: - search_params['preprocessing_' + param_type[5:6] + '__' + param_name] = ev - else: - # only for estimator eval, add `-` to the end of param - #TODO maybe add regular express check - ev = safe_eval_es(literal) - for obj in ev: - if 'n_jobs' in obj.get_params(): - obj.set_params( n_jobs=N_JOBS ) - if param_type == 'final_estimator_p': - search_params['estimator__' + param_name[:-1]] = ev - else: - search_params['preprocessing_' + param_type[5:6] + '__' + param_name[:-1]] = ev - elif param_type != 'final_estimator_p': - #TODO regular express check ? - ev = safe_eval_es(literal) - preprocessors = [preprocessing.StandardScaler(), preprocessing.Binarizer(), preprocessing.Imputer(), - preprocessing.MaxAbsScaler(), preprocessing.Normalizer(), preprocessing.MinMaxScaler(), - preprocessing.PolynomialFeatures(),preprocessing.RobustScaler(), - feature_selection.SelectKBest(), feature_selection.GenericUnivariateSelect(), - feature_selection.SelectPercentile(), feature_selection.SelectFpr(), feature_selection.SelectFdr(), - feature_selection.SelectFwe(), feature_selection.VarianceThreshold(), - decomposition.FactorAnalysis(random_state=0), decomposition.FastICA(random_state=0), decomposition.IncrementalPCA(), - decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), - decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), - decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.NMF(random_state=0), - decomposition.PCA(random_state=0), decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), - decomposition.TruncatedSVD(random_state=0), - kernel_approximation.Nystroem(random_state=0), kernel_approximation.RBFSampler(random_state=0), - kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.SkewedChi2Sampler(random_state=0), - cluster.FeatureAgglomeration(), - skrebate.ReliefF(n_jobs=N_JOBS), skrebate.SURF(n_jobs=N_JOBS), skrebate.SURFstar(n_jobs=N_JOBS), - skrebate.MultiSURF(n_jobs=N_JOBS), skrebate.MultiSURFstar(n_jobs=N_JOBS), - imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), - imblearn.under_sampling.RandomUnderSampler(random_state=0), - imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), - imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), - imblearn.over_sampling.RandomOverSampler(random_state=0), - imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), - imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), - imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), - imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), - imblearn.combine.SMOTEENN(random_state=0), imblearn.combine.SMOTETomek(random_state=0)] + if not search_list.startswith(':'): + safe_eval = SafeEval(load_scipy=True, load_numpy=True) + ev = safe_eval(search_list) + search_params[param_name] = ev + else: + # Have `:` before search list, asks for estimator evaluatio + safe_eval_es = SafeEval(load_estimators=True) + search_list = search_list[1:].strip() + # TODO maybe add regular express check + ev = safe_eval_es(search_list) + preprocessors = ( + preprocessing.StandardScaler(), preprocessing.Binarizer(), + preprocessing.Imputer(), preprocessing.MaxAbsScaler(), + preprocessing.Normalizer(), preprocessing.MinMaxScaler(), + preprocessing.PolynomialFeatures(), + preprocessing.RobustScaler(), feature_selection.SelectKBest(), + feature_selection.GenericUnivariateSelect(), + feature_selection.SelectPercentile(), + feature_selection.SelectFpr(), feature_selection.SelectFdr(), + feature_selection.SelectFwe(), + feature_selection.VarianceThreshold(), + decomposition.FactorAnalysis(random_state=0), + decomposition.FastICA(random_state=0), + decomposition.IncrementalPCA(), + decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), + decomposition.LatentDirichletAllocation( + random_state=0, n_jobs=N_JOBS), + decomposition.MiniBatchDictionaryLearning( + random_state=0, n_jobs=N_JOBS), + decomposition.MiniBatchSparsePCA( + random_state=0, n_jobs=N_JOBS), + decomposition.NMF(random_state=0), + decomposition.PCA(random_state=0), + decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), + decomposition.TruncatedSVD(random_state=0), + kernel_approximation.Nystroem(random_state=0), + kernel_approximation.RBFSampler(random_state=0), + kernel_approximation.AdditiveChi2Sampler(), + kernel_approximation.SkewedChi2Sampler(random_state=0), + cluster.FeatureAgglomeration(), + skrebate.ReliefF(n_jobs=N_JOBS), + skrebate.SURF(n_jobs=N_JOBS), + skrebate.SURFstar(n_jobs=N_JOBS), + skrebate.MultiSURF(n_jobs=N_JOBS), + skrebate.MultiSURFstar(n_jobs=N_JOBS), + imblearn.under_sampling.ClusterCentroids( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.CondensedNearestNeighbour( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.EditedNearestNeighbours( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.RepeatedEditedNearestNeighbours( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.InstanceHardnessThreshold( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.NearMiss( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.NeighbourhoodCleaningRule( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.OneSidedSelection( + random_state=0, n_jobs=N_JOBS), + imblearn.under_sampling.RandomUnderSampler( + random_state=0), + imblearn.under_sampling.TomekLinks( + random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.RandomOverSampler(random_state=0), + imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.BorderlineSMOTE( + random_state=0, n_jobs=N_JOBS), + imblearn.over_sampling.SMOTENC( + categorical_features=[], random_state=0, n_jobs=N_JOBS), + imblearn.combine.SMOTEENN(random_state=0), + imblearn.combine.SMOTETomek(random_state=0)) newlist = [] for obj in ev: if obj is None: @@ -114,87 +146,102 @@ newlist.extend(preprocessors[31:36]) elif obj == 'imb_all': newlist.extend(preprocessors[36:55]) - elif type(obj) is int and -1 < obj < len(preprocessors): + elif type(obj) is int and -1 < obj < len(preprocessors): newlist.append(preprocessors[obj]) - elif hasattr(obj, 'get_params'): # user object + elif hasattr(obj, 'get_params'): # user uploaded object if 'n_jobs' in obj.get_params(): - newlist.append( obj.set_params(n_jobs=N_JOBS) ) + newlist.append(obj.set_params(n_jobs=N_JOBS)) else: newlist.append(obj) else: - sys.exit("Unsupported preprocessor type: %r" %(obj)) - search_params['preprocessing_' + param_type[5:6]] = newlist - else: - sys.exit("Parameter name of the final estimator can't be skipped!") + sys.exit("Unsupported estimator type: %r" % (obj)) + + search_params[param_name] = newlist return search_params -if __name__ == '__main__': +def main(inputs, infile_estimator, infile1, infile2, + outfile_result, outfile_object=None, groups=None): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter + + infile_estimator : str + File path to estimator + + infile1 : str + File path to dataset containing features + + infile2 : str + File path to dataset containing target values + + outfile_result : str + File path to save the results, either cv_results or test result + + outfile_object : str, optional + File path to save searchCV object + + groups : str + File path to dataset containing groups labels + """ warnings.simplefilter('ignore') - input_json_path = sys.argv[1] - with open(input_json_path, 'r') as param_handler: + with open(inputs, 'r') as param_handler: params = json.load(param_handler) - - infile_pipeline = sys.argv[2] - infile1 = sys.argv[3] - infile2 = sys.argv[4] - outfile_result = sys.argv[5] - if len(sys.argv) > 6: - outfile_estimator = sys.argv[6] - else: - outfile_estimator = None + if groups: + (params['search_schemes']['options']['cv_selector'] + ['groups_selector']['infile_g']) = groups params_builder = params['search_schemes']['search_params_builder'] input_type = params['input_options']['selected_input'] if input_type == 'tabular': header = 'infer' if params['input_options']['header1'] else None - column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] - if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: + column_option = (params['input_options']['column_selector_options_1'] + ['selected_column_selector_option']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_1']['col1'] else: c = None X = read_columns( infile1, - c = c, - c_option = column_option, + c=c, + c_option=column_option, sep='\t', header=header, - parse_dates=True - ) + parse_dates=True).astype(float) else: X = mmread(open(infile1, 'r')) header = 'infer' if params['input_options']['header2'] else None - column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] - if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: + column_option = (params['input_options']['column_selector_options_2'] + ['selected_column_selector_option2']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: c = params['input_options']['column_selector_options_2']['col2'] else: c = None y = read_columns( infile2, - c = c, - c_option = column_option, + c=c, + c_option=column_option, sep='\t', header=header, - parse_dates=True - ) + parse_dates=True) y = y.ravel() optimizer = params['search_schemes']['selected_search_scheme'] optimizer = getattr(model_selection, optimizer) options = params['search_schemes']['options'] + splitter, groups = get_cv(options.pop('cv_selector')) - if groups is None: - options['cv'] = splitter - elif groups == '': - options['cv'] = list( splitter.split(X, y, groups=None) ) - else: - options['cv'] = list( splitter.split(X, y, groups=groups) ) + options['cv'] = splitter options['n_jobs'] = N_JOBS primary_scoring = options['scoring']['primary_scoring'] options['scoring'] = get_scoring(options['scoring']) @@ -203,32 +250,117 @@ else: options['error_score'] = np.NaN if options['refit'] and isinstance(options['scoring'], dict): - options['refit'] = 'primary' + options['refit'] = primary_scoring if 'pre_dispatch' in options and options['pre_dispatch'] == '': options['pre_dispatch'] = None - with open(infile_pipeline, 'rb') as pipeline_handler: - pipeline = load_model(pipeline_handler) + with open(infile_estimator, 'rb') as estimator_handler: + estimator = load_model(estimator_handler) + + memory = joblib.Memory(location=CACHE_DIR, verbose=0) + # cache iraps_core fits could increase search speed significantly + if estimator.__class__.__name__ == 'IRAPSClassifier': + estimator.set_params(memory=memory) + else: + for p, v in estimator.get_params().items(): + if p.endswith('memory'): + if len(p) > 8 and p[:-8].endswith('irapsclassifier'): + # cache iraps_core fits could increase search + # speed significantly + new_params = {p: memory} + estimator.set_params(**new_params) + elif v: + new_params = {p, None} + estimator.set_params(**new_params) + elif p.endswith('n_jobs'): + new_params = {p: 1} + estimator.set_params(**new_params) + + param_grid = _eval_search_params(params_builder) + searcher = optimizer(estimator, param_grid, **options) - search_params = get_search_params(params_builder) - searcher = optimizer(pipeline, search_params, **options) + # do train_test_split + do_train_test_split = params['train_test_split'].pop('do_split') + if do_train_test_split == 'yes': + # make sure refit is choosen + if not options['refit']: + raise ValueError("Refit must be `True` for shuffle splitting!") + split_options = params['train_test_split'] + + # splits + if split_options['shuffle'] == 'stratified': + split_options['labels'] = y + X, X_test, y, y_test = train_test_split(X, y, **split_options) + elif split_options['shuffle'] == 'group': + if not groups: + raise ValueError("No group based CV option was " + "choosen for group shuffle!") + split_options['labels'] = groups + X, X_test, y, y_test, groups, _ =\ + train_test_split(X, y, **split_options) + else: + if split_options['shuffle'] == 'None': + split_options['shuffle'] = None + X, X_test, y, y_test =\ + train_test_split(X, y, **split_options) + # end train_test_split if options['error_score'] == 'raise': - searcher.fit(X, y) + searcher.fit(X, y, groups=groups) else: warnings.simplefilter('always', FitFailedWarning) with warnings.catch_warnings(record=True) as w: try: - searcher.fit(X, y) + searcher.fit(X, y, groups=groups) except ValueError: pass for warning in w: print(repr(warning.message)) - cv_result = pandas.DataFrame(searcher.cv_results_) - cv_result.rename(inplace=True, columns={'mean_test_primary': 'mean_test_'+primary_scoring, 'rank_test_primary': 'rank_test_'+primary_scoring}) - cv_result.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) + if do_train_test_split == 'no': + # save results + cv_results = pandas.DataFrame(searcher.cv_results_) + cv_results = cv_results[sorted(cv_results.columns)] + cv_results.to_csv(path_or_buf=outfile_result, sep='\t', + header=True, index=False) + + # output test result using best_estimator_ + else: + best_estimator_ = searcher.best_estimator_ + if isinstance(options['scoring'], collections.Mapping): + is_multimetric = True + else: + is_multimetric = False - if outfile_estimator: - with open(outfile_estimator, 'wb') as output_handler: - pickle.dump(searcher.best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) + test_score = _score(best_estimator_, X_test, + y_test, options['scoring'], + is_multimetric=is_multimetric) + if not is_multimetric: + test_score = {primary_scoring: test_score} + for key, value in test_score.items(): + test_score[key] = [value] + result_df = pandas.DataFrame(test_score) + result_df.to_csv(path_or_buf=outfile_result, sep='\t', + header=True, index=False) + + memory.clear(warn=False) + + if outfile_object: + with open(outfile_object, 'wb') as output_handler: + pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-e", "--estimator", dest="infile_estimator") + aparser.add_argument("-X", "--infile1", dest="infile1") + aparser.add_argument("-y", "--infile2", dest="infile2") + aparser.add_argument("-r", "--outfile_result", dest="outfile_result") + aparser.add_argument("-o", "--outfile_object", dest="outfile_object") + aparser.add_argument("-g", "--groups", dest="groups") + args = aparser.parse_args() + + main(args.inputs, args.infile_estimator, args.infile1, args.infile2, + args.outfile_result, outfile_object=args.outfile_object, + groups=args.groups)