Mercurial > repos > bgruening > sklearn_estimator_attributes
comparison association_rules.py @ 17:a01fa4e8fe4f draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 12:54:40 +0000 |
parents | c9ddd20d25d0 |
children |
comparison
equal
deleted
inserted
replaced
16:d0352e8b4c10 | 17:a01fa4e8fe4f |
---|---|
5 import pandas as pd | 5 import pandas as pd |
6 from mlxtend.frequent_patterns import association_rules, fpgrowth | 6 from mlxtend.frequent_patterns import association_rules, fpgrowth |
7 from mlxtend.preprocessing import TransactionEncoder | 7 from mlxtend.preprocessing import TransactionEncoder |
8 | 8 |
9 | 9 |
10 def main(inputs, infile, outfile, min_support=0.5, min_confidence=0.5, min_lift=1.0, min_conviction=1.0, max_length=None): | 10 def main( |
11 inputs, | |
12 infile, | |
13 outfile, | |
14 min_support=0.5, | |
15 min_confidence=0.5, | |
16 min_lift=1.0, | |
17 min_conviction=1.0, | |
18 max_length=None, | |
19 ): | |
11 """ | 20 """ |
12 Parameter | 21 Parameter |
13 --------- | 22 --------- |
14 input : str | 23 input : str |
15 File path to galaxy tool parameter | 24 File path to galaxy tool parameter |
34 | 43 |
35 max_length: int | 44 max_length: int |
36 Maximum length | 45 Maximum length |
37 | 46 |
38 """ | 47 """ |
39 warnings.simplefilter('ignore') | 48 warnings.simplefilter("ignore") |
40 | 49 |
41 with open(inputs, 'r') as param_handler: | 50 with open(inputs, "r") as param_handler: |
42 params = json.load(param_handler) | 51 params = json.load(param_handler) |
43 | 52 |
44 input_header = params['header0'] | 53 input_header = params["header0"] |
45 header = 'infer' if input_header else None | 54 header = "infer" if input_header else None |
46 | 55 |
47 with open(infile) as fp: | 56 with open(infile) as fp: |
48 lines = fp.read().splitlines() | 57 lines = fp.read().splitlines() |
49 | 58 |
50 if header is not None: | 59 if header is not None: |
63 # Turn the encoded NumPy array into a DataFrame | 72 # Turn the encoded NumPy array into a DataFrame |
64 df = pd.DataFrame(te_ary, columns=te.columns_) | 73 df = pd.DataFrame(te_ary, columns=te.columns_) |
65 | 74 |
66 # Extract frequent itemsets for association rule mining | 75 # Extract frequent itemsets for association rule mining |
67 # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices | 76 # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices |
68 frequent_itemsets = fpgrowth(df, min_support=min_support, use_colnames=True, max_len=max_length) | 77 frequent_itemsets = fpgrowth( |
78 df, min_support=min_support, use_colnames=True, max_len=max_length | |
79 ) | |
69 | 80 |
70 # Get association rules, with confidence larger than min_confidence | 81 # Get association rules, with confidence larger than min_confidence |
71 rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=min_confidence) | 82 rules = association_rules( |
83 frequent_itemsets, metric="confidence", min_threshold=min_confidence | |
84 ) | |
72 | 85 |
73 # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction | 86 # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction |
74 rules = rules[(rules['lift'] >= min_lift) & (rules['conviction'] >= min_conviction)] | 87 rules = rules[(rules["lift"] >= min_lift) & (rules["conviction"] >= min_conviction)] |
75 | 88 |
76 # Convert columns from frozenset to list (more readable) | 89 # Convert columns from frozenset to list (more readable) |
77 rules['antecedents'] = rules['antecedents'].apply(list) | 90 rules["antecedents"] = rules["antecedents"].apply(list) |
78 rules['consequents'] = rules['consequents'].apply(list) | 91 rules["consequents"] = rules["consequents"].apply(list) |
79 | 92 |
80 # The next 3 steps are intended to fix the order of the association | 93 # The next 3 steps are intended to fix the order of the association |
81 # rules generated, so tests that rely on diff'ing a desired output | 94 # rules generated, so tests that rely on diff'ing a desired output |
82 # with an expected output can pass | 95 # with an expected output can pass |
83 | 96 |
84 # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' | 97 # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' |
85 rules['antecedents'] = rules['antecedents'].apply(lambda row: sorted(row)) | 98 rules["antecedents"] = rules["antecedents"].apply(lambda row: sorted(row)) |
86 rules['consequents'] = rules['consequents'].apply(lambda row: sorted(row)) | 99 rules["consequents"] = rules["consequents"].apply(lambda row: sorted(row)) |
87 | 100 |
88 # 2) Create two temporary string columns to sort on | 101 # 2) Create two temporary string columns to sort on |
89 rules['ant_str'] = rules['antecedents'].apply(lambda row: " ".join(row)) | 102 rules["ant_str"] = rules["antecedents"].apply(lambda row: " ".join(row)) |
90 rules['con_str'] = rules['consequents'].apply(lambda row: " ".join(row)) | 103 rules["con_str"] = rules["consequents"].apply(lambda row: " ".join(row)) |
91 | 104 |
92 # 3) Sort results so they are re-producable | 105 # 3) Sort results so they are re-producable |
93 rules.sort_values(by=['ant_str', 'con_str'], inplace=True) | 106 rules.sort_values(by=["ant_str", "con_str"], inplace=True) |
94 del rules['ant_str'] | 107 del rules["ant_str"] |
95 del rules['con_str'] | 108 del rules["con_str"] |
96 rules.reset_index(drop=True, inplace=True) | 109 rules.reset_index(drop=True, inplace=True) |
97 | 110 |
98 # Write association rules and metrics to file | 111 # Write association rules and metrics to file |
99 rules.to_csv(outfile, sep="\t", index=False) | 112 rules.to_csv(outfile, sep="\t", index=False) |
100 | 113 |
101 | 114 |
102 if __name__ == '__main__': | 115 if __name__ == "__main__": |
103 aparser = argparse.ArgumentParser() | 116 aparser = argparse.ArgumentParser() |
104 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 117 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
105 aparser.add_argument("-y", "--infile", dest="infile", required=True) | 118 aparser.add_argument("-y", "--infile", dest="infile", required=True) |
106 aparser.add_argument("-o", "--outfile", dest="outfile", required=True) | 119 aparser.add_argument("-o", "--outfile", dest="outfile", required=True) |
107 aparser.add_argument("-s", "--support", dest="support", default=0.5) | 120 aparser.add_argument("-s", "--support", dest="support", default=0.5) |
109 aparser.add_argument("-l", "--lift", dest="lift", default=1.0) | 122 aparser.add_argument("-l", "--lift", dest="lift", default=1.0) |
110 aparser.add_argument("-v", "--conviction", dest="conviction", default=1.0) | 123 aparser.add_argument("-v", "--conviction", dest="conviction", default=1.0) |
111 aparser.add_argument("-t", "--length", dest="length", default=5) | 124 aparser.add_argument("-t", "--length", dest="length", default=5) |
112 args = aparser.parse_args() | 125 args = aparser.parse_args() |
113 | 126 |
114 main(args.inputs, args.infile, args.outfile, | 127 main( |
115 min_support=float(args.support), min_confidence=float(args.confidence), | 128 args.inputs, |
116 min_lift=float(args.lift), min_conviction=float(args.conviction), max_length=int(args.length)) | 129 args.infile, |
130 args.outfile, | |
131 min_support=float(args.support), | |
132 min_confidence=float(args.confidence), | |
133 min_lift=float(args.lift), | |
134 min_conviction=float(args.conviction), | |
135 max_length=int(args.length), | |
136 ) |