Mercurial > repos > bgruening > sklearn_estimator_attributes
comparison estimator_attributes.xml @ 2:c411ff569a26 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:24:14 -0400 |
parents | 2ad4c2798be7 |
children | 27fabe5feedc |
comparison
equal
deleted
inserted
replaced
1:84ddbf61e107 | 2:c411ff569a26 |
---|---|
28 model_selection, naive_bayes, neighbors, pipeline, preprocessing, | 28 model_selection, naive_bayes, neighbors, pipeline, preprocessing, |
29 svm, linear_model, tree, discriminant_analysis) | 29 svm, linear_model, tree, discriminant_analysis) |
30 from imblearn.pipeline import Pipeline as imbPipeline | 30 from imblearn.pipeline import Pipeline as imbPipeline |
31 from sklearn.pipeline import Pipeline | 31 from sklearn.pipeline import Pipeline |
32 | 32 |
33 sys.path.insert(0, '$__tool_directory__') | 33 from galaxy_ml.utils import load_model, get_search_params |
34 from utils import load_model, get_search_params | |
35 | 34 |
36 warnings.simplefilter('ignore') | 35 warnings.simplefilter('ignore') |
37 | 36 |
38 infile_object = '$infile_object' | 37 infile_object = '$infile_object' |
39 attribute = '$attribute_type' | 38 attribute = '$attribute_type' |
49 elif attribute == 'final_estimator': | 48 elif attribute == 'final_estimator': |
50 res = est_obj.steps[-1][-1] | 49 res = est_obj.steps[-1][-1] |
51 print(repr(res)) | 50 print(repr(res)) |
52 with open('$outfile', 'wb') as f: | 51 with open('$outfile', 'wb') as f: |
53 pickle.dump(res, f, pickle.HIGHEST_PROTOCOL) | 52 pickle.dump(res, f, pickle.HIGHEST_PROTOCOL) |
54 elif attribute in ['best_estimator_', 'init_']: | 53 elif attribute in ['best_estimator_', 'init_', 'classifier_', 'regressor_']: |
55 res = getattr(est_obj, attribute) | 54 res = getattr(est_obj, attribute) |
56 print(repr(res)) | 55 print(repr(res)) |
57 with open('$outfile', 'wb') as f: | 56 with open('$outfile', 'wb') as f: |
58 pickle.dump(res, f, pickle.HIGHEST_PROTOCOL) | 57 pickle.dump(res, f, pickle.HIGHEST_PROTOCOL) |
59 elif attribute in ['oob_score_', 'best_score_', 'n_features_']: | 58 elif attribute in ['oob_score_', 'best_score_', 'n_features_']: |
66 f.write(repr(res)) | 65 f.write(repr(res)) |
67 elif attribute == 'cv_results_': | 66 elif attribute == 'cv_results_': |
68 res = pandas.DataFrame(est_obj.cv_results_) | 67 res = pandas.DataFrame(est_obj.cv_results_) |
69 res = res[sorted(res.columns)] | 68 res = res[sorted(res.columns)] |
70 res.to_csv('$outfile', sep='\t', index=False) | 69 res.to_csv('$outfile', sep='\t', index=False) |
70 elif attribute == 'save_weights': | |
71 est_obj.save_weights('$outfile') | |
71 else: | 72 else: |
72 res = getattr(est_obj, attribute) | 73 if attribute == 'get_signature': |
74 res = est_obj.get_signature() | |
75 else: | |
76 res = getattr(est_obj, attribute) | |
73 columns = [] | 77 columns = [] |
74 if res.ndim == 1 or res.shape[-1] == 1: | 78 if res.ndim == 1 or res.shape[-1] == 1: |
75 columns = [attribute] | 79 columns = [attribute] |
76 else: | 80 else: |
77 for i in range(res.shape[-1]): | 81 for i in range(res.shape[-1]): |
89 <option value="feature_importances_" >Fitted estimator - feature_importances_ </option> | 93 <option value="feature_importances_" >Fitted estimator - feature_importances_ </option> |
90 <option value="coef_">Fitted estimator - coef_ </option> | 94 <option value="coef_">Fitted estimator - coef_ </option> |
91 <option value="train_score_">Fitted estimator - train_score_ </option> | 95 <option value="train_score_">Fitted estimator - train_score_ </option> |
92 <option value="oob_score_">Fitted estimator - oob_score_ </option> | 96 <option value="oob_score_">Fitted estimator - oob_score_ </option> |
93 <option value="init_">Fitted estimator - init_ </option> | 97 <option value="init_">Fitted estimator - init_ </option> |
98 <option value="classifier_">Fitted BinarizeTargetClassifier - classifier_</option> | |
99 <option value="regressor_">Fitted BinarizeTargetRegressor - regressor_</option> | |
100 <option value="get_signature">Fitted IRAPSClassifier - get_signature</option> | |
94 <option value="named_steps">Pipeline - named_steps </option> | 101 <option value="named_steps">Pipeline - named_steps </option> |
95 <option value="final_estimator">Pipeline - final_estimator </option> | 102 <option value="final_estimator">Pipeline - final_estimator </option> |
96 <option value="cv_results_">SearchCV - cv_results_ </option> | 103 <option value="cv_results_">SearchCV - cv_results_ </option> |
97 <option value="best_estimator_">SearchCV - best_estimator_ </option> | 104 <option value="best_estimator_">SearchCV - best_estimator_ </option> |
98 <option value="best_score_">SearchCV - best_score_ </option> | 105 <option value="best_score_">SearchCV - best_score_ </option> |
100 <option value="scores_">Feature_selection - scores_ </option> | 107 <option value="scores_">Feature_selection - scores_ </option> |
101 <option value="pvalues_">Feature_selection - pvalues_ </option> | 108 <option value="pvalues_">Feature_selection - pvalues_ </option> |
102 <option value="ranking_">Feature_selection - ranking_ </option> | 109 <option value="ranking_">Feature_selection - ranking_ </option> |
103 <option value="n_features_">Feature_selection - n_features_ </option> | 110 <option value="n_features_">Feature_selection - n_features_ </option> |
104 <option value="grid_scores_">Feature_selection - grid_scores_ </option> | 111 <option value="grid_scores_">Feature_selection - grid_scores_ </option> |
112 <option value="save_weights">KerasGClassifier/KerasGRegressor - save_weights</option> | |
105 </param> | 113 </param> |
106 </inputs> | 114 </inputs> |
107 <outputs> | 115 <outputs> |
108 <data format="tabular" name="outfile" label="${attribute_type} from ${on_string}"> | 116 <data format="tabular" name="outfile" label="${attribute_type} from ${on_string}"> |
109 <change_format> | 117 <change_format> |
110 <when input="attribute_type" value="named_steps" format="txt" /> | 118 <when input="attribute_type" value="named_steps" format="txt" /> |
111 <when input="attribute_type" value="best_params_" format="txt" /> | 119 <when input="attribute_type" value="best_params_" format="txt" /> |
112 <when input="attribute_type" value="final_estimator" format="zip" /> | 120 <when input="attribute_type" value="final_estimator" format="zip" /> |
113 <when input="attribute_type" value="best_estimator_" format="zip" /> | 121 <when input="attribute_type" value="best_estimator_" format="zip" /> |
114 <when input="attribute_type" value="init_" format="zip" /> | 122 <when input="attribute_type" value="init_" format="zip" /> |
123 <when input="attribute_type" value="classifier_" format="zip" /> | |
124 <when input="attribute_type" value="regressor_" format="zip" /> | |
125 <when input="attribute_type" value="save_weights" format="h5"/> | |
115 </change_format> | 126 </change_format> |
116 </data> | 127 </data> |
117 </outputs> | 128 </outputs> |
118 <tests> | 129 <tests> |
119 <test> | 130 <test> |
154 <test> | 165 <test> |
155 <param name="infile_object" value="LinearRegression02.zip" ftype="zip"/> | 166 <param name="infile_object" value="LinearRegression02.zip" ftype="zip"/> |
156 <param name="attribute_type" value="get_params"/> | 167 <param name="attribute_type" value="get_params"/> |
157 <output name="outfile" value="get_params.tabular"/> | 168 <output name="outfile" value="get_params.tabular"/> |
158 </test> | 169 </test> |
170 <test> | |
171 <param name="infile_object" value="fitted_keras_g_regressor01.zip" ftype="zip"/> | |
172 <param name="attribute_type" value="save_weights"/> | |
173 <output name="outfile" value="keras_save_weights01.h5" compare="sim_size" delta="5"/> | |
174 </test> | |
159 </tests> | 175 </tests> |
160 <help> | 176 <help> |
161 <![CDATA[ | 177 <![CDATA[ |
162 **What it does** | 178 **What it does** |
163 Output attribute from an estimator or any scikit object. | 179 Output attribute from an estimator or any scikit object. |