Mercurial > repos > bgruening > sklearn_estimator_attributes
diff utils.py @ 0:2ad4c2798be7 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
author | bgruening |
---|---|
date | Tue, 14 May 2019 18:12:53 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/utils.py Tue May 14 18:12:53 2019 -0400 @@ -0,0 +1,599 @@ +import ast +import json +import imblearn +import numpy as np +import pandas +import pickle +import re +import scipy +import sklearn +import skrebate +import sys +import warnings +import xgboost + +from collections import Counter +from asteval import Interpreter, make_symbol_table +from imblearn import under_sampling, over_sampling, combine +from imblearn.pipeline import Pipeline as imbPipeline +from mlxtend import regressor, classifier +from scipy.io import mmread +from sklearn import ( + cluster, compose, decomposition, ensemble, feature_extraction, + feature_selection, gaussian_process, kernel_approximation, metrics, + model_selection, naive_bayes, neighbors, pipeline, preprocessing, + svm, linear_model, tree, discriminant_analysis) + +try: + import iraps_classifier +except ImportError: + pass + +try: + import model_validations +except ImportError: + pass + +try: + import feature_selectors +except ImportError: + pass + +try: + import preprocessors +except ImportError: + pass + +# handle pickle white list file +WL_FILE = __import__('os').path.join( + __import__('os').path.dirname(__file__), 'pk_whitelist.json') + +N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) + + +class _SafePickler(pickle.Unpickler, object): + """ + Used to safely deserialize scikit-learn model objects + Usage: + eg.: _SafePickler.load(pickled_file_object) + """ + def __init__(self, file): + super(_SafePickler, self).__init__(file) + # load global white list + with open(WL_FILE, 'r') as f: + self.pk_whitelist = json.load(f) + + self.bad_names = ( + 'and', 'as', 'assert', 'break', 'class', 'continue', + 'def', 'del', 'elif', 'else', 'except', 'exec', + 'finally', 'for', 'from', 'global', 'if', 'import', + 'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', + 'raise', 'return', 'try', 'system', 'while', 'with', + 'True', 'False', 'None', 'eval', 'execfile', '__import__', + '__package__', '__subclasses__', '__bases__', '__globals__', + '__code__', '__closure__', '__func__', '__self__', '__module__', + '__dict__', '__class__', '__call__', '__get__', + '__getattribute__', '__subclasshook__', '__new__', + '__init__', 'func_globals', 'func_code', 'func_closure', + 'im_class', 'im_func', 'im_self', 'gi_code', 'gi_frame', + '__asteval__', 'f_locals', '__mro__') + + # unclassified good globals + self.good_names = [ + 'copy_reg._reconstructor', '__builtin__.object', + '__builtin__.bytearray', 'builtins.object', + 'builtins.bytearray', 'keras.engine.sequential.Sequential', + 'keras.engine.sequential.Model'] + + # custom module in Galaxy-ML + self.custom_modules = [ + '__main__', 'keras_galaxy_models', 'feature_selectors', + 'preprocessors', 'iraps_classifier', 'model_validations'] + + # override + def find_class(self, module, name): + # balack list first + if name in self.bad_names: + raise pickle.UnpicklingError("global '%s.%s' is forbidden" + % (module, name)) + + # custom module in Galaxy-ML + if module in self.custom_modules: + cutom_module = sys.modules.get(module, None) + if cutom_module: + return getattr(cutom_module, name) + else: + raise pickle.UnpicklingError("Module %s' is not imported" + % module) + + # For objects from outside libraries, it's necessary to verify + # both module and name. Currently only a blacklist checker + # is working. + # TODO: replace with a whitelist checker. + good_names = self.good_names + pk_whitelist = self.pk_whitelist + if re.match(r'^[a-zA-Z_][a-zA-Z0-9_]*$', name): + fullname = module + '.' + name + if (fullname in good_names)\ + or (module.startswith(('sklearn.', 'xgboost.', 'skrebate.', + 'imblearn.', 'mlxtend.', 'numpy.')) + or module == 'numpy'): + if fullname not in (pk_whitelist['SK_NAMES'] + + pk_whitelist['SKR_NAMES'] + + pk_whitelist['XGB_NAMES'] + + pk_whitelist['NUMPY_NAMES'] + + pk_whitelist['IMBLEARN_NAMES'] + + pk_whitelist['MLXTEND_NAMES'] + + good_names): + # raise pickle.UnpicklingError + print("Warning: global %s is not in pickler whitelist " + "yet and will loss support soon. Contact tool " + "author or leave a message at github.com" % fullname) + mod = sys.modules[module] + return getattr(mod, name) + + raise pickle.UnpicklingError("global '%s' is forbidden" % fullname) + + +def load_model(file): + """Load pickled object with `_SafePicker` + """ + return _SafePickler(file).load() + + +def read_columns(f, c=None, c_option='by_index_number', + return_df=False, **args): + """Return array from a tabular dataset by various columns selection + """ + data = pandas.read_csv(f, **args) + if c_option == 'by_index_number': + cols = list(map(lambda x: x - 1, c)) + data = data.iloc[:, cols] + if c_option == 'all_but_by_index_number': + cols = list(map(lambda x: x - 1, c)) + data.drop(data.columns[cols], axis=1, inplace=True) + if c_option == 'by_header_name': + cols = [e.strip() for e in c.split(',')] + data = data[cols] + if c_option == 'all_but_by_header_name': + cols = [e.strip() for e in c.split(',')] + data.drop(cols, axis=1, inplace=True) + y = data.values + if return_df: + return y, data + else: + return y + + +def feature_selector(inputs, X=None, y=None): + """generate an instance of sklearn.feature_selection classes + + Parameters + ---------- + inputs : dict + From galaxy tool parameters. + X : array + Containing training features. + y : array or list + Target values. + """ + selector = inputs['selected_algorithm'] + if selector != 'DyRFECV': + selector = getattr(sklearn.feature_selection, selector) + options = inputs['options'] + + if inputs['selected_algorithm'] == 'SelectFromModel': + if not options['threshold'] or options['threshold'] == 'None': + options['threshold'] = None + else: + try: + options['threshold'] = float(options['threshold']) + except ValueError: + pass + if inputs['model_inputter']['input_mode'] == 'prefitted': + model_file = inputs['model_inputter']['fitted_estimator'] + with open(model_file, 'rb') as model_handler: + fitted_estimator = load_model(model_handler) + new_selector = selector(fitted_estimator, prefit=True, **options) + else: + estimator_json = inputs['model_inputter']['estimator_selector'] + estimator = get_estimator(estimator_json) + check_feature_importances = try_get_attr( + 'feature_selectors', 'check_feature_importances') + estimator = check_feature_importances(estimator) + new_selector = selector(estimator, **options) + + elif inputs['selected_algorithm'] == 'RFE': + step = options.get('step', None) + if step and step >= 1.0: + options['step'] = int(step) + estimator = get_estimator(inputs["estimator_selector"]) + check_feature_importances = try_get_attr( + 'feature_selectors', 'check_feature_importances') + estimator = check_feature_importances(estimator) + new_selector = selector(estimator, **options) + + elif inputs['selected_algorithm'] == 'RFECV': + options['scoring'] = get_scoring(options['scoring']) + options['n_jobs'] = N_JOBS + splitter, groups = get_cv(options.pop('cv_selector')) + if groups is None: + options['cv'] = splitter + else: + options['cv'] = list(splitter.split(X, y, groups=groups)) + step = options.get('step', None) + if step and step >= 1.0: + options['step'] = int(step) + estimator = get_estimator(inputs['estimator_selector']) + check_feature_importances = try_get_attr( + 'feature_selectors', 'check_feature_importances') + estimator = check_feature_importances(estimator) + new_selector = selector(estimator, **options) + + elif inputs['selected_algorithm'] == 'DyRFECV': + options['scoring'] = get_scoring(options['scoring']) + options['n_jobs'] = N_JOBS + splitter, groups = get_cv(options.pop('cv_selector')) + if groups is None: + options['cv'] = splitter + else: + options['cv'] = list(splitter.split(X, y, groups=groups)) + step = options.get('step') + if not step or step == 'None': + step = None + else: + step = ast.literal_eval(step) + options['step'] = step + estimator = get_estimator(inputs["estimator_selector"]) + check_feature_importances = try_get_attr( + 'feature_selectors', 'check_feature_importances') + estimator = check_feature_importances(estimator) + DyRFECV = try_get_attr('feature_selectors', 'DyRFECV') + + new_selector = DyRFECV(estimator, **options) + + elif inputs['selected_algorithm'] == 'VarianceThreshold': + new_selector = selector(**options) + + else: + score_func = inputs['score_func'] + score_func = getattr(sklearn.feature_selection, score_func) + new_selector = selector(score_func, **options) + + return new_selector + + +def get_X_y(params, file1, file2): + """Return machine learning inputs X, y from tabluar inputs + """ + input_type = (params['selected_tasks']['selected_algorithms'] + ['input_options']['selected_input']) + if input_type == 'tabular': + header = 'infer' if (params['selected_tasks']['selected_algorithms'] + ['input_options']['header1']) else None + column_option = (params['selected_tasks']['selected_algorithms'] + ['input_options']['column_selector_options_1'] + ['selected_column_selector_option']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = (params['selected_tasks']['selected_algorithms'] + ['input_options']['column_selector_options_1']['col1']) + else: + c = None + X = read_columns( + file1, + c=c, + c_option=column_option, + sep='\t', + header=header, + parse_dates=True).astype(float) + else: + X = mmread(file1) + + header = 'infer' if (params['selected_tasks']['selected_algorithms'] + ['input_options']['header2']) else None + column_option = (params['selected_tasks']['selected_algorithms'] + ['input_options']['column_selector_options_2'] + ['selected_column_selector_option2']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = (params['selected_tasks']['selected_algorithms'] + ['input_options']['column_selector_options_2']['col2']) + else: + c = None + y = read_columns( + file2, + c=c, + c_option=column_option, + sep='\t', + header=header, + parse_dates=True) + y = y.ravel() + + return X, y + + +class SafeEval(Interpreter): + """Customized symbol table for safely literal eval + """ + def __init__(self, load_scipy=False, load_numpy=False, + load_estimators=False): + + # File opening and other unneeded functions could be dropped + unwanted = ['open', 'type', 'dir', 'id', 'str', 'repr'] + + # Allowed symbol table. Add more if needed. + new_syms = { + 'np_arange': getattr(np, 'arange'), + 'ensemble_ExtraTreesClassifier': + getattr(ensemble, 'ExtraTreesClassifier') + } + + syms = make_symbol_table(use_numpy=False, **new_syms) + + if load_scipy: + scipy_distributions = scipy.stats.distributions.__dict__ + for k, v in scipy_distributions.items(): + if isinstance(v, (scipy.stats.rv_continuous, + scipy.stats.rv_discrete)): + syms['scipy_stats_' + k] = v + + if load_numpy: + from_numpy_random = [ + 'beta', 'binomial', 'bytes', 'chisquare', 'choice', + 'dirichlet', 'division', 'exponential', 'f', 'gamma', + 'geometric', 'gumbel', 'hypergeometric', 'laplace', + 'logistic', 'lognormal', 'logseries', 'mtrand', + 'multinomial', 'multivariate_normal', 'negative_binomial', + 'noncentral_chisquare', 'noncentral_f', 'normal', 'pareto', + 'permutation', 'poisson', 'power', 'rand', 'randint', + 'randn', 'random', 'random_integers', 'random_sample', + 'ranf', 'rayleigh', 'sample', 'seed', 'set_state', + 'shuffle', 'standard_cauchy', 'standard_exponential', + 'standard_gamma', 'standard_normal', 'standard_t', + 'triangular', 'uniform', 'vonmises', 'wald', 'weibull', 'zipf'] + for f in from_numpy_random: + syms['np_random_' + f] = getattr(np.random, f) + + if load_estimators: + estimator_table = { + 'sklearn_svm': getattr(sklearn, 'svm'), + 'sklearn_tree': getattr(sklearn, 'tree'), + 'sklearn_ensemble': getattr(sklearn, 'ensemble'), + 'sklearn_neighbors': getattr(sklearn, 'neighbors'), + 'sklearn_naive_bayes': getattr(sklearn, 'naive_bayes'), + 'sklearn_linear_model': getattr(sklearn, 'linear_model'), + 'sklearn_cluster': getattr(sklearn, 'cluster'), + 'sklearn_decomposition': getattr(sklearn, 'decomposition'), + 'sklearn_preprocessing': getattr(sklearn, 'preprocessing'), + 'sklearn_feature_selection': + getattr(sklearn, 'feature_selection'), + 'sklearn_kernel_approximation': + getattr(sklearn, 'kernel_approximation'), + 'skrebate_ReliefF': getattr(skrebate, 'ReliefF'), + 'skrebate_SURF': getattr(skrebate, 'SURF'), + 'skrebate_SURFstar': getattr(skrebate, 'SURFstar'), + 'skrebate_MultiSURF': getattr(skrebate, 'MultiSURF'), + 'skrebate_MultiSURFstar': getattr(skrebate, 'MultiSURFstar'), + 'skrebate_TuRF': getattr(skrebate, 'TuRF'), + 'xgboost_XGBClassifier': getattr(xgboost, 'XGBClassifier'), + 'xgboost_XGBRegressor': getattr(xgboost, 'XGBRegressor'), + 'imblearn_over_sampling': getattr(imblearn, 'over_sampling'), + 'imblearn_combine': getattr(imblearn, 'combine') + } + syms.update(estimator_table) + + for key in unwanted: + syms.pop(key, None) + + super(SafeEval, self).__init__( + symtable=syms, use_numpy=False, minimal=False, + no_if=True, no_for=True, no_while=True, no_try=True, + no_functiondef=True, no_ifexp=True, no_listcomp=False, + no_augassign=False, no_assert=True, no_delete=True, + no_raise=True, no_print=True) + + +def get_estimator(estimator_json): + """Return a sklearn or compatible estimator from Galaxy tool inputs + """ + estimator_module = estimator_json['selected_module'] + + if estimator_module == 'custom_estimator': + c_estimator = estimator_json['c_estimator'] + with open(c_estimator, 'rb') as model_handler: + new_model = load_model(model_handler) + return new_model + + if estimator_module == "binarize_target": + wrapped_estimator = estimator_json['wrapped_estimator'] + with open(wrapped_estimator, 'rb') as model_handler: + wrapped_estimator = load_model(model_handler) + options = {} + if estimator_json['z_score'] is not None: + options['z_score'] = estimator_json['z_score'] + if estimator_json['value'] is not None: + options['value'] = estimator_json['value'] + options['less_is_positive'] = estimator_json['less_is_positive'] + if estimator_json['clf_or_regr'] == 'BinarizeTargetClassifier': + klass = try_get_attr('iraps_classifier', + 'BinarizeTargetClassifier') + else: + klass = try_get_attr('iraps_classifier', + 'BinarizeTargetRegressor') + return klass(wrapped_estimator, **options) + + estimator_cls = estimator_json['selected_estimator'] + + if estimator_module == 'xgboost': + klass = getattr(xgboost, estimator_cls) + else: + module = getattr(sklearn, estimator_module) + klass = getattr(module, estimator_cls) + + estimator = klass() + + estimator_params = estimator_json['text_params'].strip() + if estimator_params != '': + try: + safe_eval = SafeEval() + params = safe_eval('dict(' + estimator_params + ')') + except ValueError: + sys.exit("Unsupported parameter input: `%s`" % estimator_params) + estimator.set_params(**params) + if 'n_jobs' in estimator.get_params(): + estimator.set_params(n_jobs=N_JOBS) + + return estimator + + +def get_cv(cv_json): + """ Return CV splitter from Galaxy tool inputs + + Parameters + ---------- + cv_json : dict + From Galaxy tool inputs. + e.g.: + { + 'selected_cv': 'StratifiedKFold', + 'n_splits': 3, + 'shuffle': True, + 'random_state': 0 + } + """ + cv = cv_json.pop('selected_cv') + if cv == 'default': + return cv_json['n_splits'], None + + groups = cv_json.pop('groups_selector', None) + if groups is not None: + infile_g = groups['infile_g'] + header = 'infer' if groups['header_g'] else None + column_option = (groups['column_selector_options_g'] + ['selected_column_selector_option_g']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = groups['column_selector_options_g']['col_g'] + else: + c = None + groups = read_columns( + infile_g, + c=c, + c_option=column_option, + sep='\t', + header=header, + parse_dates=True) + groups = groups.ravel() + + for k, v in cv_json.items(): + if v == '': + cv_json[k] = None + + test_fold = cv_json.get('test_fold', None) + if test_fold: + if test_fold.startswith('__ob__'): + test_fold = test_fold[6:] + if test_fold.endswith('__cb__'): + test_fold = test_fold[:-6] + cv_json['test_fold'] = [int(x.strip()) for x in test_fold.split(',')] + + test_size = cv_json.get('test_size', None) + if test_size and test_size > 1.0: + cv_json['test_size'] = int(test_size) + + if cv == 'OrderedKFold': + cv_class = try_get_attr('model_validations', 'OrderedKFold') + elif cv == 'RepeatedOrderedKFold': + cv_class = try_get_attr('model_validations', 'RepeatedOrderedKFold') + else: + cv_class = getattr(model_selection, cv) + splitter = cv_class(**cv_json) + + return splitter, groups + + +# needed when sklearn < v0.20 +def balanced_accuracy_score(y_true, y_pred): + """Compute balanced accuracy score, which is now available in + scikit-learn from v0.20.0. + """ + C = metrics.confusion_matrix(y_true, y_pred) + with np.errstate(divide='ignore', invalid='ignore'): + per_class = np.diag(C) / C.sum(axis=1) + if np.any(np.isnan(per_class)): + warnings.warn('y_pred contains classes not in y_true') + per_class = per_class[~np.isnan(per_class)] + score = np.mean(per_class) + return score + + +def get_scoring(scoring_json): + """Return single sklearn scorer class + or multiple scoers in dictionary + """ + if scoring_json['primary_scoring'] == 'default': + return None + + my_scorers = metrics.SCORERS + my_scorers['binarize_auc_scorer'] =\ + try_get_attr('iraps_classifier', 'binarize_auc_scorer') + my_scorers['binarize_average_precision_scorer'] =\ + try_get_attr('iraps_classifier', 'binarize_average_precision_scorer') + if 'balanced_accuracy' not in my_scorers: + my_scorers['balanced_accuracy'] =\ + metrics.make_scorer(balanced_accuracy_score) + + if scoring_json['secondary_scoring'] != 'None'\ + and scoring_json['secondary_scoring'] !=\ + scoring_json['primary_scoring']: + return_scoring = {} + primary_scoring = scoring_json['primary_scoring'] + return_scoring[primary_scoring] = my_scorers[primary_scoring] + for scorer in scoring_json['secondary_scoring'].split(','): + if scorer != scoring_json['primary_scoring']: + return_scoring[scorer] = my_scorers[scorer] + return return_scoring + + return my_scorers[scoring_json['primary_scoring']] + + +def get_search_params(estimator): + """Format the output of `estimator.get_params()` + """ + params = estimator.get_params() + results = [] + for k, v in params.items(): + # params below won't be shown for search in the searchcv tool + keywords = ('n_jobs', 'pre_dispatch', 'memory', 'steps', + 'nthread', 'verbose') + if k.endswith(keywords): + results.append(['*', k, k+": "+repr(v)]) + else: + results.append(['@', k, k+": "+repr(v)]) + results.append( + ["", "Note:", + "@, params eligible for search in searchcv tool."]) + + return results + + +def try_get_attr(module, name): + """try to get attribute from a custom module + + Parameters + ---------- + module : str + Module name + name : str + Attribute (class/function) name. + + Returns + ------- + class or function + """ + mod = sys.modules.get(module, None) + if mod: + return getattr(mod, name) + else: + raise Exception("No module named %s." % module)