Mercurial > repos > bgruening > sklearn_estimator_attributes
view estimator_attributes.xml @ 12:74de84506e74 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 22:06:10 +0000 |
parents | 27fabe5feedc |
children | a01fa4e8fe4f |
line wrap: on
line source
<tool id="sklearn_estimator_attributes" name="Estimator attributes" version="@VERSION@" profile="20.05"> <description>get important attributes from an estimator or scikit object</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements" /> <expand macro="macro_stdio" /> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ python '$main_script' ]]> </command> <configfiles> <configfile name="main_script"> <![CDATA[ import json import pandas import pickle import skrebate import sys import warnings import xgboost from mlxtend import regressor, classifier from sklearn import ( cluster, compose, decomposition, ensemble, feature_extraction, feature_selection, gaussian_process, kernel_approximation, metrics, model_selection, naive_bayes, neighbors, pipeline, preprocessing, svm, linear_model, tree, discriminant_analysis) from imblearn.pipeline import Pipeline as imbPipeline from sklearn.pipeline import Pipeline from galaxy_ml.utils import load_model, get_search_params warnings.simplefilter('ignore') infile_object = '$infile_object' attribute = '$attribute_type' with open(infile_object, 'rb') as f: est_obj = load_model(f) if attribute == 'get_params': ## get_params() results = get_search_params(est_obj) df = pandas.DataFrame(results, columns=['', 'Parameter', 'Value']) df.to_csv('$outfile', sep='\t', index=False) elif attribute == 'final_estimator': res = est_obj.steps[-1][-1] print(repr(res)) with open('$outfile', 'wb') as f: pickle.dump(res, f, pickle.HIGHEST_PROTOCOL) elif attribute in ['best_estimator_', 'init_', 'classifier_', 'regressor_']: res = getattr(est_obj, attribute) print(repr(res)) with open('$outfile', 'wb') as f: pickle.dump(res, f, pickle.HIGHEST_PROTOCOL) elif attribute in ['oob_score_', 'best_score_', 'n_features_']: res = getattr(est_obj, attribute) res = pandas.DataFrame([res], columns=[attribute]) res.to_csv('$outfile', sep='\t', index=False) elif attribute in ['best_params_', 'named_steps']: res = getattr(est_obj, attribute) with open('$outfile', 'w') as f: f.write(repr(res)) elif attribute == 'cv_results_': res = pandas.DataFrame(est_obj.cv_results_) res = res[sorted(res.columns)] res.to_csv('$outfile', sep='\t', index=False) elif attribute == 'save_weights': est_obj.save_weights('$outfile') else: if attribute == 'get_signature': res = est_obj.get_signature() else: res = getattr(est_obj, attribute) columns = [] if res.ndim == 1 or res.shape[-1] == 1: columns = [attribute] else: for i in range(res.shape[-1]): columns.append(attribute + '_' + str(i)) res = pandas.DataFrame(res, columns=columns) res.to_csv('$outfile', sep='\t', index=False) ]]> </configfile> </configfiles> <inputs> <param name="infile_object" type="data" format="zip" label="Choose the dataset containing estimator/pipeline object" /> <param name="attribute_type" type="select" label="Select an attribute retrival type"> <option value="get_params" selected="true">Estimator - get_params()</option> <option value="feature_importances_">Fitted estimator - feature_importances_ </option> <option value="coef_">Fitted estimator - coef_ </option> <option value="train_score_">Fitted estimator - train_score_ </option> <option value="oob_score_">Fitted estimator - oob_score_ </option> <option value="init_">Fitted estimator - init_ </option> <option value="classifier_">Fitted BinarizeTargetClassifier - classifier_</option> <option value="regressor_">Fitted BinarizeTargetRegressor - regressor_</option> <option value="get_signature">Fitted IRAPSClassifier - get_signature</option> <option value="named_steps">Pipeline - named_steps </option> <option value="final_estimator">Pipeline - final_estimator </option> <option value="cv_results_">SearchCV - cv_results_ </option> <option value="best_estimator_">SearchCV - best_estimator_ </option> <option value="best_score_">SearchCV - best_score_ </option> <option value="best_params_">SearchCV - best_params_ </option> <option value="scores_">Feature_selection - scores_ </option> <option value="pvalues_">Feature_selection - pvalues_ </option> <option value="ranking_">Feature_selection - ranking_ </option> <option value="n_features_">Feature_selection - n_features_ </option> <option value="grid_scores_">Feature_selection - grid_scores_ </option> <option value="save_weights">KerasGClassifier/KerasGRegressor - save_weights</option> </param> </inputs> <outputs> <data format="tabular" name="outfile" label="${attribute_type} from ${on_string}"> <change_format> <when input="attribute_type" value="named_steps" format="txt" /> <when input="attribute_type" value="best_params_" format="txt" /> <when input="attribute_type" value="final_estimator" format="zip" /> <when input="attribute_type" value="best_estimator_" format="zip" /> <when input="attribute_type" value="init_" format="zip" /> <when input="attribute_type" value="classifier_" format="zip" /> <when input="attribute_type" value="regressor_" format="zip" /> <when input="attribute_type" value="save_weights" format="h5" /> </change_format> </data> </outputs> <tests> <test> <param name="infile_object" value="GridSearchCV.zip" ftype="zip" /> <param name="attribute_type" value="best_score_" /> <output name="outfile" file="best_score_.tabular" /> </test> <test> <param name="infile_object" value="GridSearchCV.zip" ftype="zip" /> <param name="attribute_type" value="best_params_" /> <output name="outfile" file="best_params_.txt" /> </test> <test> <param name="infile_object" value="GridSearchCV.zip" ftype="zip" /> <param name="attribute_type" value="best_estimator_" /> <output name="outfile" file="best_estimator_.zip" compare="sim_size" delta="10" /> </test> <test> <param name="infile_object" value="best_estimator_.zip" ftype="zip" /> <param name="attribute_type" value="final_estimator" /> <output name="outfile" file="final_estimator.zip" compare="sim_size" delta="10" /> </test> <test> <param name="infile_object" value="best_estimator_.zip" ftype="zip" /> <param name="attribute_type" value="named_steps" /> <output name="outfile" file="named_steps.txt" compare="sim_size" delta="5" /> </test> <test> <param name="infile_object" value="final_estimator.zip" ftype="zip" /> <param name="attribute_type" value="feature_importances_" /> <output name="outfile" file="feature_importances_.tabular" /> </test> <test> <param name="infile_object" value="RFE.zip" ftype="zip" /> <param name="attribute_type" value="ranking_" /> <output name="outfile" file="ranking_.tabular" /> </test> <test> <param name="infile_object" value="LinearRegression02.zip" ftype="zip" /> <param name="attribute_type" value="get_params" /> <output name="outfile" value="get_params.tabular" /> </test> <test> <param name="infile_object" value="fitted_keras_g_regressor01.zip" ftype="zip" /> <param name="attribute_type" value="save_weights" /> <output name="outfile" value="keras_save_weights01.h5" compare="sim_size" delta="5" /> </test> </tests> <help> <![CDATA[ **What it does** Output attribute from an estimator or any scikit object. Common attributes are : - ``estimator.`` *feature_importances_* - ``RFE``. *ranking_* - ``RFECV``. *grid_scores_* - ``GridSearchCV``. *best_estimator_* ]]> </help> <expand macro="sklearn_citation"> <expand macro="skrebate_citation" /> <expand macro="xgboost_citation" /> <expand macro="imblearn_citation" /> </expand> </tool>