Mercurial > repos > bgruening > sklearn_feature_selection
comparison keras_train_and_eval.py @ 29:93f3b307485f draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 18:21:34 +0000 |
parents | 41b109e70a7f |
children | 1d20e0dce176 |
comparison
equal
deleted
inserted
replaced
28:6d21b03e00a1 | 29:93f3b307485f |
---|---|
8 import warnings | 8 import warnings |
9 from itertools import chain | 9 from itertools import chain |
10 from scipy.io import mmread | 10 from scipy.io import mmread |
11 from sklearn.pipeline import Pipeline | 11 from sklearn.pipeline import Pipeline |
12 from sklearn.metrics.scorer import _check_multimetric_scoring | 12 from sklearn.metrics.scorer import _check_multimetric_scoring |
13 from sklearn import model_selection | |
14 from sklearn.model_selection._validation import _score | 13 from sklearn.model_selection._validation import _score |
15 from sklearn.model_selection import _search, _validation | 14 from sklearn.model_selection import _search, _validation |
16 from sklearn.utils import indexable, safe_indexing | 15 from sklearn.utils import indexable, safe_indexing |
17 | 16 |
18 from galaxy_ml.externals.selene_sdk.utils import compute_score | 17 from galaxy_ml.externals.selene_sdk.utils import compute_score |
19 from galaxy_ml.model_validations import train_test_split | 18 from galaxy_ml.model_validations import train_test_split |
20 from galaxy_ml.keras_galaxy_models import _predict_generator | 19 from galaxy_ml.keras_galaxy_models import _predict_generator |
21 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | 20 from galaxy_ml.utils import ( |
22 read_columns, try_get_attr, get_module, | 21 SafeEval, |
23 clean_params, get_main_estimator) | 22 get_scoring, |
24 | 23 load_model, |
25 | 24 read_columns, |
26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | 25 try_get_attr, |
27 setattr(_search, '_fit_and_score', _fit_and_score) | 26 get_module, |
28 setattr(_validation, '_fit_and_score', _fit_and_score) | 27 clean_params, |
29 | 28 get_main_estimator, |
30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | 29 ) |
31 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | 30 |
31 | |
32 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
33 setattr(_search, "_fit_and_score", _fit_and_score) | |
34 setattr(_validation, "_fit_and_score", _fit_and_score) | |
35 | |
36 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
37 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
32 del os | 38 del os |
33 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | 39 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") |
34 'nthread', 'callbacks') | 40 ALLOWED_CALLBACKS = ( |
35 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | 41 "EarlyStopping", |
36 'CSVLogger', 'None') | 42 "TerminateOnNaN", |
43 "ReduceLROnPlateau", | |
44 "CSVLogger", | |
45 "None", | |
46 ) | |
37 | 47 |
38 | 48 |
39 def _eval_swap_params(params_builder): | 49 def _eval_swap_params(params_builder): |
40 swap_params = {} | 50 swap_params = {} |
41 | 51 |
42 for p in params_builder['param_set']: | 52 for p in params_builder["param_set"]: |
43 swap_value = p['sp_value'].strip() | 53 swap_value = p["sp_value"].strip() |
44 if swap_value == '': | 54 if swap_value == "": |
45 continue | 55 continue |
46 | 56 |
47 param_name = p['sp_name'] | 57 param_name = p["sp_name"] |
48 if param_name.lower().endswith(NON_SEARCHABLE): | 58 if param_name.lower().endswith(NON_SEARCHABLE): |
49 warnings.warn("Warning: `%s` is not eligible for search and was " | 59 warnings.warn("Warning: `%s` is not eligible for search and was " "omitted!" % param_name) |
50 "omitted!" % param_name) | |
51 continue | 60 continue |
52 | 61 |
53 if not swap_value.startswith(':'): | 62 if not swap_value.startswith(":"): |
54 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | 63 safe_eval = SafeEval(load_scipy=True, load_numpy=True) |
55 ev = safe_eval(swap_value) | 64 ev = safe_eval(swap_value) |
56 else: | 65 else: |
57 # Have `:` before search list, asks for estimator evaluatio | 66 # Have `:` before search list, asks for estimator evaluatio |
58 safe_eval_es = SafeEval(load_estimators=True) | 67 safe_eval_es = SafeEval(load_estimators=True) |
75 if arr is None: | 84 if arr is None: |
76 nones.append(idx) | 85 nones.append(idx) |
77 else: | 86 else: |
78 new_arrays.append(arr) | 87 new_arrays.append(arr) |
79 | 88 |
80 if kwargs['shuffle'] == 'None': | 89 if kwargs["shuffle"] == "None": |
81 kwargs['shuffle'] = None | 90 kwargs["shuffle"] = None |
82 | 91 |
83 group_names = kwargs.pop('group_names', None) | 92 group_names = kwargs.pop("group_names", None) |
84 | 93 |
85 if group_names is not None and group_names.strip(): | 94 if group_names is not None and group_names.strip(): |
86 group_names = [name.strip() for name in | 95 group_names = [name.strip() for name in group_names.split(",")] |
87 group_names.split(',')] | |
88 new_arrays = indexable(*new_arrays) | 96 new_arrays = indexable(*new_arrays) |
89 groups = kwargs['labels'] | 97 groups = kwargs["labels"] |
90 n_samples = new_arrays[0].shape[0] | 98 n_samples = new_arrays[0].shape[0] |
91 index_arr = np.arange(n_samples) | 99 index_arr = np.arange(n_samples) |
92 test = index_arr[np.isin(groups, group_names)] | 100 test = index_arr[np.isin(groups, group_names)] |
93 train = index_arr[~np.isin(groups, group_names)] | 101 train = index_arr[~np.isin(groups, group_names)] |
94 rval = list(chain.from_iterable( | 102 rval = list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays)) |
95 (safe_indexing(a, train), | |
96 safe_indexing(a, test)) for a in new_arrays)) | |
97 else: | 103 else: |
98 rval = train_test_split(*new_arrays, **kwargs) | 104 rval = train_test_split(*new_arrays, **kwargs) |
99 | 105 |
100 for pos in nones: | 106 for pos in nones: |
101 rval[pos * 2: 2] = [None, None] | 107 rval[pos * 2 : 2] = [None, None] |
102 | 108 |
103 return rval | 109 return rval |
104 | 110 |
105 | 111 |
106 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | 112 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): |
107 """ output scores based on input scorer | 113 """output scores based on input scorer |
108 | 114 |
109 Parameters | 115 Parameters |
110 ---------- | 116 ---------- |
111 y_true : array | 117 y_true : array |
112 True label or target values | 118 True label or target values |
116 dict of `sklearn.metrics.scorer.SCORER` | 122 dict of `sklearn.metrics.scorer.SCORER` |
117 is_multimetric : bool, default is True | 123 is_multimetric : bool, default is True |
118 """ | 124 """ |
119 if y_true.ndim == 1 or y_true.shape[-1] == 1: | 125 if y_true.ndim == 1 or y_true.shape[-1] == 1: |
120 pred_probas = pred_probas.ravel() | 126 pred_probas = pred_probas.ravel() |
121 pred_labels = (pred_probas > 0.5).astype('int32') | 127 pred_labels = (pred_probas > 0.5).astype("int32") |
122 targets = y_true.ravel().astype('int32') | 128 targets = y_true.ravel().astype("int32") |
123 if not is_multimetric: | 129 if not is_multimetric: |
124 preds = pred_labels if scorer.__class__.__name__ == \ | 130 preds = pred_labels if scorer.__class__.__name__ == "_PredictScorer" else pred_probas |
125 '_PredictScorer' else pred_probas | |
126 score = scorer._score_func(targets, preds, **scorer._kwargs) | 131 score = scorer._score_func(targets, preds, **scorer._kwargs) |
127 | 132 |
128 return score | 133 return score |
129 else: | 134 else: |
130 scores = {} | 135 scores = {} |
131 for name, one_scorer in scorer.items(): | 136 for name, one_scorer in scorer.items(): |
132 preds = pred_labels if one_scorer.__class__.__name__\ | 137 preds = pred_labels if one_scorer.__class__.__name__ == "_PredictScorer" else pred_probas |
133 == '_PredictScorer' else pred_probas | 138 score = one_scorer._score_func(targets, preds, **one_scorer._kwargs) |
134 score = one_scorer._score_func(targets, preds, | |
135 **one_scorer._kwargs) | |
136 scores[name] = score | 139 scores[name] = score |
137 | 140 |
138 # TODO: multi-class metrics | 141 # TODO: multi-class metrics |
139 # multi-label | 142 # multi-label |
140 else: | 143 else: |
141 pred_labels = (pred_probas > 0.5).astype('int32') | 144 pred_labels = (pred_probas > 0.5).astype("int32") |
142 targets = y_true.astype('int32') | 145 targets = y_true.astype("int32") |
143 if not is_multimetric: | 146 if not is_multimetric: |
144 preds = pred_labels if scorer.__class__.__name__ == \ | 147 preds = pred_labels if scorer.__class__.__name__ == "_PredictScorer" else pred_probas |
145 '_PredictScorer' else pred_probas | 148 score, _ = compute_score(preds, targets, scorer._score_func) |
146 score, _ = compute_score(preds, targets, | |
147 scorer._score_func) | |
148 return score | 149 return score |
149 else: | 150 else: |
150 scores = {} | 151 scores = {} |
151 for name, one_scorer in scorer.items(): | 152 for name, one_scorer in scorer.items(): |
152 preds = pred_labels if one_scorer.__class__.__name__\ | 153 preds = pred_labels if one_scorer.__class__.__name__ == "_PredictScorer" else pred_probas |
153 == '_PredictScorer' else pred_probas | 154 score, _ = compute_score(preds, targets, one_scorer._score_func) |
154 score, _ = compute_score(preds, targets, | |
155 one_scorer._score_func) | |
156 scores[name] = score | 155 scores[name] = score |
157 | 156 |
158 return scores | 157 return scores |
159 | 158 |
160 | 159 |
161 def main(inputs, infile_estimator, infile1, infile2, | 160 def main( |
162 outfile_result, outfile_object=None, | 161 inputs, |
163 outfile_weights=None, outfile_y_true=None, | 162 infile_estimator, |
164 outfile_y_preds=None, groups=None, | 163 infile1, |
165 ref_seq=None, intervals=None, targets=None, | 164 infile2, |
166 fasta_path=None): | 165 outfile_result, |
166 outfile_object=None, | |
167 outfile_weights=None, | |
168 outfile_y_true=None, | |
169 outfile_y_preds=None, | |
170 groups=None, | |
171 ref_seq=None, | |
172 intervals=None, | |
173 targets=None, | |
174 fasta_path=None, | |
175 ): | |
167 """ | 176 """ |
168 Parameter | 177 Parameter |
169 --------- | 178 --------- |
170 inputs : str | 179 inputs : str |
171 File path to galaxy tool parameter | 180 File path to galaxy tool parameter |
207 File path to dataset compressed target bed file | 216 File path to dataset compressed target bed file |
208 | 217 |
209 fasta_path : str | 218 fasta_path : str |
210 File path to dataset containing fasta file | 219 File path to dataset containing fasta file |
211 """ | 220 """ |
212 warnings.simplefilter('ignore') | 221 warnings.simplefilter("ignore") |
213 | 222 |
214 with open(inputs, 'r') as param_handler: | 223 with open(inputs, "r") as param_handler: |
215 params = json.load(param_handler) | 224 params = json.load(param_handler) |
216 | 225 |
217 # load estimator | 226 # load estimator |
218 with open(infile_estimator, 'rb') as estimator_handler: | 227 with open(infile_estimator, "rb") as estimator_handler: |
219 estimator = load_model(estimator_handler) | 228 estimator = load_model(estimator_handler) |
220 | 229 |
221 estimator = clean_params(estimator) | 230 estimator = clean_params(estimator) |
222 | 231 |
223 # swap hyperparameter | 232 # swap hyperparameter |
224 swapping = params['experiment_schemes']['hyperparams_swapping'] | 233 swapping = params["experiment_schemes"]["hyperparams_swapping"] |
225 swap_params = _eval_swap_params(swapping) | 234 swap_params = _eval_swap_params(swapping) |
226 estimator.set_params(**swap_params) | 235 estimator.set_params(**swap_params) |
227 | 236 |
228 estimator_params = estimator.get_params() | 237 estimator_params = estimator.get_params() |
229 | 238 |
230 # store read dataframe object | 239 # store read dataframe object |
231 loaded_df = {} | 240 loaded_df = {} |
232 | 241 |
233 input_type = params['input_options']['selected_input'] | 242 input_type = params["input_options"]["selected_input"] |
234 # tabular input | 243 # tabular input |
235 if input_type == 'tabular': | 244 if input_type == "tabular": |
236 header = 'infer' if params['input_options']['header1'] else None | 245 header = "infer" if params["input_options"]["header1"] else None |
237 column_option = (params['input_options']['column_selector_options_1'] | 246 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] |
238 ['selected_column_selector_option']) | 247 if column_option in [ |
239 if column_option in ['by_index_number', 'all_but_by_index_number', | 248 "by_index_number", |
240 'by_header_name', 'all_but_by_header_name']: | 249 "all_but_by_index_number", |
241 c = params['input_options']['column_selector_options_1']['col1'] | 250 "by_header_name", |
251 "all_but_by_header_name", | |
252 ]: | |
253 c = params["input_options"]["column_selector_options_1"]["col1"] | |
242 else: | 254 else: |
243 c = None | 255 c = None |
244 | 256 |
245 df_key = infile1 + repr(header) | 257 df_key = infile1 + repr(header) |
246 df = pd.read_csv(infile1, sep='\t', header=header, | 258 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) |
247 parse_dates=True) | |
248 loaded_df[df_key] = df | 259 loaded_df[df_key] = df |
249 | 260 |
250 X = read_columns(df, c=c, c_option=column_option).astype(float) | 261 X = read_columns(df, c=c, c_option=column_option).astype(float) |
251 # sparse input | 262 # sparse input |
252 elif input_type == 'sparse': | 263 elif input_type == "sparse": |
253 X = mmread(open(infile1, 'r')) | 264 X = mmread(open(infile1, "r")) |
254 | 265 |
255 # fasta_file input | 266 # fasta_file input |
256 elif input_type == 'seq_fasta': | 267 elif input_type == "seq_fasta": |
257 pyfaidx = get_module('pyfaidx') | 268 pyfaidx = get_module("pyfaidx") |
258 sequences = pyfaidx.Fasta(fasta_path) | 269 sequences = pyfaidx.Fasta(fasta_path) |
259 n_seqs = len(sequences.keys()) | 270 n_seqs = len(sequences.keys()) |
260 X = np.arange(n_seqs)[:, np.newaxis] | 271 X = np.arange(n_seqs)[:, np.newaxis] |
261 for param in estimator_params.keys(): | 272 for param in estimator_params.keys(): |
262 if param.endswith('fasta_path'): | 273 if param.endswith("fasta_path"): |
263 estimator.set_params( | 274 estimator.set_params(**{param: fasta_path}) |
264 **{param: fasta_path}) | |
265 break | 275 break |
266 else: | 276 else: |
267 raise ValueError( | 277 raise ValueError( |
268 "The selected estimator doesn't support " | 278 "The selected estimator doesn't support " |
269 "fasta file input! Please consider using " | 279 "fasta file input! Please consider using " |
270 "KerasGBatchClassifier with " | 280 "KerasGBatchClassifier with " |
271 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | 281 "FastaDNABatchGenerator/FastaProteinBatchGenerator " |
272 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | 282 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " |
273 "in pipeline!") | 283 "in pipeline!" |
274 | 284 ) |
275 elif input_type == 'refseq_and_interval': | 285 |
286 elif input_type == "refseq_and_interval": | |
276 path_params = { | 287 path_params = { |
277 'data_batch_generator__ref_genome_path': ref_seq, | 288 "data_batch_generator__ref_genome_path": ref_seq, |
278 'data_batch_generator__intervals_path': intervals, | 289 "data_batch_generator__intervals_path": intervals, |
279 'data_batch_generator__target_path': targets | 290 "data_batch_generator__target_path": targets, |
280 } | 291 } |
281 estimator.set_params(**path_params) | 292 estimator.set_params(**path_params) |
282 n_intervals = sum(1 for line in open(intervals)) | 293 n_intervals = sum(1 for line in open(intervals)) |
283 X = np.arange(n_intervals)[:, np.newaxis] | 294 X = np.arange(n_intervals)[:, np.newaxis] |
284 | 295 |
285 # Get target y | 296 # Get target y |
286 header = 'infer' if params['input_options']['header2'] else None | 297 header = "infer" if params["input_options"]["header2"] else None |
287 column_option = (params['input_options']['column_selector_options_2'] | 298 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] |
288 ['selected_column_selector_option2']) | 299 if column_option in [ |
289 if column_option in ['by_index_number', 'all_but_by_index_number', | 300 "by_index_number", |
290 'by_header_name', 'all_but_by_header_name']: | 301 "all_but_by_index_number", |
291 c = params['input_options']['column_selector_options_2']['col2'] | 302 "by_header_name", |
303 "all_but_by_header_name", | |
304 ]: | |
305 c = params["input_options"]["column_selector_options_2"]["col2"] | |
292 else: | 306 else: |
293 c = None | 307 c = None |
294 | 308 |
295 df_key = infile2 + repr(header) | 309 df_key = infile2 + repr(header) |
296 if df_key in loaded_df: | 310 if df_key in loaded_df: |
297 infile2 = loaded_df[df_key] | 311 infile2 = loaded_df[df_key] |
298 else: | 312 else: |
299 infile2 = pd.read_csv(infile2, sep='\t', | 313 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
300 header=header, parse_dates=True) | |
301 loaded_df[df_key] = infile2 | 314 loaded_df[df_key] = infile2 |
302 | 315 |
303 y = read_columns( | 316 y = read_columns(infile2, |
304 infile2, | 317 c=c, |
305 c=c, | 318 c_option=column_option, |
306 c_option=column_option, | 319 sep='\t', |
307 sep='\t', | 320 header=header, |
308 header=header, | 321 parse_dates=True) |
309 parse_dates=True) | |
310 if len(y.shape) == 2 and y.shape[1] == 1: | 322 if len(y.shape) == 2 and y.shape[1] == 1: |
311 y = y.ravel() | 323 y = y.ravel() |
312 if input_type == 'refseq_and_interval': | 324 if input_type == "refseq_and_interval": |
313 estimator.set_params( | 325 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) |
314 data_batch_generator__features=y.ravel().tolist()) | |
315 y = None | 326 y = None |
316 # end y | 327 # end y |
317 | 328 |
318 # load groups | 329 # load groups |
319 if groups: | 330 if groups: |
320 groups_selector = (params['experiment_schemes']['test_split'] | 331 groups_selector = (params["experiment_schemes"]["test_split"]["split_algos"]).pop("groups_selector") |
321 ['split_algos']).pop('groups_selector') | 332 |
322 | 333 header = "infer" if groups_selector["header_g"] else None |
323 header = 'infer' if groups_selector['header_g'] else None | 334 column_option = groups_selector["column_selector_options_g"]["selected_column_selector_option_g"] |
324 column_option = \ | 335 if column_option in [ |
325 (groups_selector['column_selector_options_g'] | 336 "by_index_number", |
326 ['selected_column_selector_option_g']) | 337 "all_but_by_index_number", |
327 if column_option in ['by_index_number', 'all_but_by_index_number', | 338 "by_header_name", |
328 'by_header_name', 'all_but_by_header_name']: | 339 "all_but_by_header_name", |
329 c = groups_selector['column_selector_options_g']['col_g'] | 340 ]: |
341 c = groups_selector["column_selector_options_g"]["col_g"] | |
330 else: | 342 else: |
331 c = None | 343 c = None |
332 | 344 |
333 df_key = groups + repr(header) | 345 df_key = groups + repr(header) |
334 if df_key in loaded_df: | 346 if df_key in loaded_df: |
335 groups = loaded_df[df_key] | 347 groups = loaded_df[df_key] |
336 | 348 |
337 groups = read_columns( | 349 groups = read_columns(groups, |
338 groups, | 350 c=c, |
339 c=c, | 351 c_option=column_option, |
340 c_option=column_option, | 352 sep='\t', |
341 sep='\t', | 353 header=header, |
342 header=header, | 354 parse_dates=True) |
343 parse_dates=True) | |
344 groups = groups.ravel() | 355 groups = groups.ravel() |
345 | 356 |
346 # del loaded_df | 357 # del loaded_df |
347 del loaded_df | 358 del loaded_df |
348 | 359 |
349 # cache iraps_core fits could increase search speed significantly | 360 # cache iraps_core fits could increase search speed significantly |
350 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 361 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
351 main_est = get_main_estimator(estimator) | 362 main_est = get_main_estimator(estimator) |
352 if main_est.__class__.__name__ == 'IRAPSClassifier': | 363 if main_est.__class__.__name__ == "IRAPSClassifier": |
353 main_est.set_params(memory=memory) | 364 main_est.set_params(memory=memory) |
354 | 365 |
355 # handle scorer, convert to scorer dict | 366 # handle scorer, convert to scorer dict |
356 scoring = params['experiment_schemes']['metrics']['scoring'] | 367 scoring = params['experiment_schemes']['metrics']['scoring'] |
368 if scoring is not None: | |
369 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
370 # Check if secondary_scoring is specified | |
371 secondary_scoring = scoring.get("secondary_scoring", None) | |
372 if secondary_scoring is not None: | |
373 # If secondary_scoring is specified, convert the list into comman separated string | |
374 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
375 | |
357 scorer = get_scoring(scoring) | 376 scorer = get_scoring(scoring) |
358 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | 377 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) |
359 | 378 |
360 # handle test (first) split | 379 # handle test (first) split |
361 test_split_options = (params['experiment_schemes'] | 380 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] |
362 ['test_split']['split_algos']) | 381 |
363 | 382 if test_split_options["shuffle"] == "group": |
364 if test_split_options['shuffle'] == 'group': | 383 test_split_options["labels"] = groups |
365 test_split_options['labels'] = groups | 384 if test_split_options["shuffle"] == "stratified": |
366 if test_split_options['shuffle'] == 'stratified': | |
367 if y is not None: | 385 if y is not None: |
368 test_split_options['labels'] = y | 386 test_split_options["labels"] = y |
369 else: | 387 else: |
370 raise ValueError("Stratified shuffle split is not " | 388 raise ValueError("Stratified shuffle split is not " "applicable on empty target values!") |
371 "applicable on empty target values!") | 389 |
372 | 390 ( |
373 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | 391 X_train, |
374 train_test_split_none(X, y, groups, **test_split_options) | 392 X_test, |
375 | 393 y_train, |
376 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | 394 y_test, |
395 groups_train, | |
396 _groups_test, | |
397 ) = train_test_split_none(X, y, groups, **test_split_options) | |
398 | |
399 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
377 | 400 |
378 # handle validation (second) split | 401 # handle validation (second) split |
379 if exp_scheme == 'train_val_test': | 402 if exp_scheme == "train_val_test": |
380 val_split_options = (params['experiment_schemes'] | 403 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] |
381 ['val_split']['split_algos']) | 404 |
382 | 405 if val_split_options["shuffle"] == "group": |
383 if val_split_options['shuffle'] == 'group': | 406 val_split_options["labels"] = groups_train |
384 val_split_options['labels'] = groups_train | 407 if val_split_options["shuffle"] == "stratified": |
385 if val_split_options['shuffle'] == 'stratified': | |
386 if y_train is not None: | 408 if y_train is not None: |
387 val_split_options['labels'] = y_train | 409 val_split_options["labels"] = y_train |
388 else: | 410 else: |
389 raise ValueError("Stratified shuffle split is not " | 411 raise ValueError("Stratified shuffle split is not " "applicable on empty target values!") |
390 "applicable on empty target values!") | 412 |
391 | 413 ( |
392 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | 414 X_train, |
393 train_test_split_none(X_train, y_train, groups_train, | 415 X_val, |
394 **val_split_options) | 416 y_train, |
417 y_val, | |
418 groups_train, | |
419 _groups_val, | |
420 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
395 | 421 |
396 # train and eval | 422 # train and eval |
397 if hasattr(estimator, 'validation_data'): | 423 if hasattr(estimator, "validation_data"): |
398 if exp_scheme == 'train_val_test': | 424 if exp_scheme == "train_val_test": |
399 estimator.fit(X_train, y_train, | 425 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) |
400 validation_data=(X_val, y_val)) | 426 else: |
401 else: | 427 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) |
402 estimator.fit(X_train, y_train, | |
403 validation_data=(X_test, y_test)) | |
404 else: | 428 else: |
405 estimator.fit(X_train, y_train) | 429 estimator.fit(X_train, y_train) |
406 | 430 |
407 if hasattr(estimator, 'evaluate'): | 431 if hasattr(estimator, "evaluate"): |
408 steps = estimator.prediction_steps | 432 steps = estimator.prediction_steps |
409 batch_size = estimator.batch_size | 433 batch_size = estimator.batch_size |
410 generator = estimator.data_generator_.flow(X_test, y=y_test, | 434 generator = estimator.data_generator_.flow(X_test, y=y_test, batch_size=batch_size) |
411 batch_size=batch_size) | 435 predictions, y_true = _predict_generator(estimator.model_, generator, steps=steps) |
412 predictions, y_true = _predict_generator(estimator.model_, generator, | |
413 steps=steps) | |
414 scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) | 436 scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) |
415 | 437 |
416 else: | 438 else: |
417 if hasattr(estimator, 'predict_proba'): | 439 if hasattr(estimator, "predict_proba"): |
418 predictions = estimator.predict_proba(X_test) | 440 predictions = estimator.predict_proba(X_test) |
419 else: | 441 else: |
420 predictions = estimator.predict(X_test) | 442 predictions = estimator.predict(X_test) |
421 | 443 |
422 y_true = y_test | 444 y_true = y_test |
423 scores = _score(estimator, X_test, y_test, scorer, | 445 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) |
424 is_multimetric=True) | |
425 if outfile_y_true: | 446 if outfile_y_true: |
426 try: | 447 try: |
427 pd.DataFrame(y_true).to_csv(outfile_y_true, sep='\t', | 448 pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) |
428 index=False) | |
429 pd.DataFrame(predictions).astype(np.float32).to_csv( | 449 pd.DataFrame(predictions).astype(np.float32).to_csv( |
430 outfile_y_preds, sep='\t', index=False, | 450 outfile_y_preds, |
431 float_format='%g', chunksize=10000) | 451 sep="\t", |
452 index=False, | |
453 float_format="%g", | |
454 chunksize=10000, | |
455 ) | |
432 except Exception as e: | 456 except Exception as e: |
433 print("Error in saving predictions: %s" % e) | 457 print("Error in saving predictions: %s" % e) |
434 | 458 |
435 # handle output | 459 # handle output |
436 for name, score in scores.items(): | 460 for name, score in scores.items(): |
437 scores[name] = [score] | 461 scores[name] = [score] |
438 df = pd.DataFrame(scores) | 462 df = pd.DataFrame(scores) |
439 df = df[sorted(df.columns)] | 463 df = df[sorted(df.columns)] |
440 df.to_csv(path_or_buf=outfile_result, sep='\t', | 464 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) |
441 header=True, index=False) | |
442 | 465 |
443 memory.clear(warn=False) | 466 memory.clear(warn=False) |
444 | 467 |
445 if outfile_object: | 468 if outfile_object: |
446 main_est = estimator | 469 main_est = estimator |
447 if isinstance(estimator, Pipeline): | 470 if isinstance(estimator, Pipeline): |
448 main_est = estimator.steps[-1][-1] | 471 main_est = estimator.steps[-1][-1] |
449 | 472 |
450 if hasattr(main_est, 'model_') \ | 473 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): |
451 and hasattr(main_est, 'save_weights'): | |
452 if outfile_weights: | 474 if outfile_weights: |
453 main_est.save_weights(outfile_weights) | 475 main_est.save_weights(outfile_weights) |
454 del main_est.model_ | 476 del main_est.model_ |
455 del main_est.fit_params | 477 del main_est.fit_params |
456 del main_est.model_class_ | 478 del main_est.model_class_ |
457 del main_est.validation_data | 479 if getattr(main_est, "validation_data", None): |
458 if getattr(main_est, 'data_generator_', None): | 480 del main_est.validation_data |
481 if getattr(main_est, "data_generator_", None): | |
459 del main_est.data_generator_ | 482 del main_est.data_generator_ |
460 | 483 |
461 with open(outfile_object, 'wb') as output_handler: | 484 with open(outfile_object, "wb") as output_handler: |
462 pickle.dump(estimator, output_handler, | 485 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) |
463 pickle.HIGHEST_PROTOCOL) | 486 |
464 | 487 |
465 | 488 if __name__ == "__main__": |
466 if __name__ == '__main__': | |
467 aparser = argparse.ArgumentParser() | 489 aparser = argparse.ArgumentParser() |
468 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 490 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
469 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 491 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
470 aparser.add_argument("-X", "--infile1", dest="infile1") | 492 aparser.add_argument("-X", "--infile1", dest="infile1") |
471 aparser.add_argument("-y", "--infile2", dest="infile2") | 493 aparser.add_argument("-y", "--infile2", dest="infile2") |
479 aparser.add_argument("-b", "--intervals", dest="intervals") | 501 aparser.add_argument("-b", "--intervals", dest="intervals") |
480 aparser.add_argument("-t", "--targets", dest="targets") | 502 aparser.add_argument("-t", "--targets", dest="targets") |
481 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 503 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") |
482 args = aparser.parse_args() | 504 args = aparser.parse_args() |
483 | 505 |
484 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 506 main( |
485 args.outfile_result, outfile_object=args.outfile_object, | 507 args.inputs, |
486 outfile_weights=args.outfile_weights, | 508 args.infile_estimator, |
487 outfile_y_true=args.outfile_y_true, | 509 args.infile1, |
488 outfile_y_preds=args.outfile_y_preds, | 510 args.infile2, |
489 groups=args.groups, | 511 args.outfile_result, |
490 ref_seq=args.ref_seq, intervals=args.intervals, | 512 outfile_object=args.outfile_object, |
491 targets=args.targets, fasta_path=args.fasta_path) | 513 outfile_weights=args.outfile_weights, |
514 outfile_y_true=args.outfile_y_true, | |
515 outfile_y_preds=args.outfile_y_preds, | |
516 groups=args.groups, | |
517 ref_seq=args.ref_seq, | |
518 intervals=args.intervals, | |
519 targets=args.targets, | |
520 fasta_path=args.fasta_path, | |
521 ) |