Mercurial > repos > bgruening > sklearn_feature_selection
comparison feature_selection.xml @ 6:b0d554b38770 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit cd4a8b019168acd5a513c57a1b1f380622f230f6
author | bgruening |
---|---|
date | Sun, 01 Jul 2018 03:20:10 -0400 |
parents | 2d681d0f9393 |
children | 537c6763c018 |
comparison
equal
deleted
inserted
replaced
5:2d681d0f9393 | 6:b0d554b38770 |
---|---|
34 features_has_header = params["input_options"]["header1"] | 34 features_has_header = params["input_options"]["header1"] |
35 input_type = params["input_options"]["selected_input"] | 35 input_type = params["input_options"]["selected_input"] |
36 if input_type=="tabular": | 36 if input_type=="tabular": |
37 header = 'infer' if features_has_header else None | 37 header = 'infer' if features_has_header else None |
38 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] | 38 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] |
39 if column_option in ["by_index_number", "all_but_by_index_number"]: | 39 if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: |
40 c = params["input_options"]["column_selector_options_1"]["col1"] | 40 c = params["input_options"]["column_selector_options_1"]["col1"] |
41 else: | 41 else: |
42 c = None | 42 c = None |
43 X, input_df = read_columns( | 43 X, input_df = read_columns( |
44 "$input_options.infile1", | 44 "$input_options.infile1", |
53 X = mmread(open("$input_options.infile1", 'r')) | 53 X = mmread(open("$input_options.infile1", 'r')) |
54 | 54 |
55 ## Read labels | 55 ## Read labels |
56 header = 'infer' if params["input_options"]["header2"] else None | 56 header = 'infer' if params["input_options"]["header2"] else None |
57 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] | 57 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] |
58 if column_option in ["by_index_number", "all_but_by_index_number"]: | 58 if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]: |
59 c = params["input_options"]["column_selector_options_2"]["col2"] | 59 c = params["input_options"]["column_selector_options_2"]["col2"] |
60 else: | 60 else: |
61 c = None | 61 c = None |
62 y = read_columns( | 62 y = read_columns( |
63 "$input_options.infile2", | 63 "$input_options.infile2", |
210 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> | 210 <param name="infile2" value="regression_y.tabular" ftype="tabular"/> |
211 <param name="col2" value="1"/> | 211 <param name="col2" value="1"/> |
212 <param name="header2" value="True"/> | 212 <param name="header2" value="True"/> |
213 <output name="outfile" file="feature_selection_result10"/> | 213 <output name="outfile" file="feature_selection_result10"/> |
214 </test> | 214 </test> |
215 <test> | |
216 <param name="selected_algorithm" value="SelectKBest"/> | |
217 <param name="k" value="3"/> | |
218 <param name="infile1" value="test3.tabular" ftype="tabular"/> | |
219 <param name="header1" value="True"/> | |
220 <param name="selected_column_selector_option" value="all_but_by_header_name"/> | |
221 <param name="col1" value="target"/> | |
222 <param name="infile2" value="test3.tabular" ftype="tabular"/> | |
223 <param name="header2" value="True"/> | |
224 <param name="selected_column_selector_option2" value="by_header_name"/> | |
225 <param name="col2" value="target"/> | |
226 <output name="outfile" file="feature_selection_result11"/> | |
227 </test> | |
215 </tests> | 228 </tests> |
216 <help> | 229 <help> |
217 <![CDATA[ | 230 <![CDATA[ |
218 **What it does** | 231 **What it does** |
219 This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on | 232 This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on |