Mercurial > repos > bgruening > sklearn_feature_selection
diff feature_selection.xml @ 35:61edd9e5c17f draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 13:10:57 +0000 |
parents | 93f3b307485f |
children |
line wrap: on
line diff
--- a/feature_selection.xml Thu Aug 11 09:24:57 2022 +0000 +++ b/feature_selection.xml Wed Aug 09 13:10:57 2023 +0000 @@ -1,4 +1,4 @@ -<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@" profile="20.05"> +<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@" profile="@PROFILE@"> <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description> <macros> <import>main_macros.xml</import> @@ -31,6 +31,7 @@ from imblearn.pipeline import Pipeline as imbPipeline from sklearn.pipeline import Pipeline +from galaxy_ml.model_persist import dump_model_to_h5 from galaxy_ml.utils import (SafeEval, feature_selector, read_columns, get_module) @@ -80,13 +81,14 @@ else: c = None X, input_df = read_columns( - '$input_options.infile1', - c = c, - c_option = column_option, - return_df = True, - sep='\t', - header=header, - parse_dates=True) + '$input_options.infile1', + c = c, + c_option = column_option, + return_df = True, + sep='\t', + header=header, + parse_dates=True, +) X = X.astype(float) #elif $input_options.selected_input == 'seq_fasta' fasta_file = '$input_options.fasta_file' @@ -118,12 +120,13 @@ else: c = None y = read_columns( - '$input_options.infile2', - c = c, - c_option = column_option, - sep='\t', - header=header, - parse_dates=True) + '$input_options.infile2', + c = c, + c_option = column_option, + sep='\t', + header=header, + parse_dates=True, +) y = y.ravel() ## Create feature selector @@ -142,8 +145,7 @@ res.to_csv(path_or_buf='$outfile', sep='\t', index=False) #if $save: -with open('$outfile_selector', 'wb') as output_handler: - pickle.dump(new_selector, output_handler, pickle.HIGHEST_PROTOCOL) +dump_model_to_h5(new_selector, '$outfile_selector') #end if ]]> @@ -156,7 +158,7 @@ </inputs> <outputs> <data format="tabular" name="outfile" /> - <data format="zip" name="outfile_selector" label="${fs_algorithm_selector.selected_algorithm}"> + <data format="h5mlm" name="outfile_selector" label="${fs_algorithm_selector.selected_algorithm}"> <filter>save</filter> </data> </outputs> @@ -294,13 +296,13 @@ <test> <param name="selected_algorithm" value="SelectFromModel" /> <param name="input_mode" value="prefitted" /> - <param name="fitted_estimator" value="rfr_model01" ftype="zip" /> - <param name="infile1" value="regression_train.tabular" ftype="tabular" /> - <param name="header1" value="false" /> - <param name="col1" value="1,2,3,4,5" /> - <param name="infile2" value="regression_train.tabular" ftype="tabular" /> + <param name="fitted_estimator" value="searchCV03" ftype="h5mlm" /> + <param name="infile1" value="regression_X.tabular" ftype="tabular" /> + <param name="header1" value="true" /> + <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" /> + <param name="infile2" value="regression_y.tabular" ftype="tabular" /> <param name="col2" value="1" /> - <param name="header2" value="false" /> + <param name="header2" value="true" /> <output name="outfile" file="feature_selection_result12" /> </test> <test>