view feature_selection.xml @ 15:026667802750 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2a058459e6daf0486871f93845f00fdb4a4eaca1
author bgruening
date Sat, 29 Sep 2018 07:30:44 -0400
parents dc411a215138
children 2bbbac61e48d
line wrap: on
line source

<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@.1">
    <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description>
    <macros>
        <import>main_macros.xml</import>
    </macros>
    <expand macro="python_requirements"/>
    <expand macro="macro_stdio"/>
    <version_command>echo "@VERSION@"</version_command>
    <command>
        <![CDATA[
        python "$feature_selection_script" '$inputs'
        ]]>
    </command>
    <configfiles>
        <inputs name="inputs" />
        <configfile name="feature_selection_script">
            <![CDATA[
import sys
import os
import json
import pandas
import sklearn.feature_selection

with open("$__tool_directory__/sk_whitelist.json", "r") as f:
    sk_whitelist = json.load(f)
exec(open("$__tool_directory__/utils.py").read(), globals())

safe_eval = SafeEval()

input_json_path = sys.argv[1]
with open(input_json_path, "r") as param_handler:
    params = json.load(param_handler)

#handle cheetah
#if $fs_algorithm_selector.selected_algorithm == "SelectFromModel"\
        and $fs_algorithm_selector.model_inputter.input_mode == "prefitted":
params['fs_algorithm_selector']['model_inputter']['fitted_estimator'] =\
        "$fs_algorithm_selector.model_inputter.fitted_estimator"
#end if

# Read features
features_has_header = params["input_options"]["header1"]
input_type = params["input_options"]["selected_input"]
if input_type=="tabular":
    header = 'infer' if features_has_header else None
    column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"]
    if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
        c = params["input_options"]["column_selector_options_1"]["col1"]
    else:
        c = None
    X, input_df = read_columns(
            "$input_options.infile1",
            c = c,
            c_option = column_option,
            return_df = True,
            sep='\t',
            header=header,
            parse_dates=True
    )
else:
    X = mmread("$input_options.infile1")

# Read labels
header = 'infer' if params["input_options"]["header2"] else None
column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
    c = params["input_options"]["column_selector_options_2"]["col2"]
else:
    c = None
y = read_columns(
        "$input_options.infile2",
        c = c,
        c_option = column_option,
        sep='\t',
        header=header,
        parse_dates=True
)
y=y.ravel()

# Create feature selector
new_selector = feature_selector(params['fs_algorithm_selector'])
if params['fs_algorithm_selector']['selected_algorithm'] != 'SelectFromModel'\
        or params['fs_algorithm_selector']['model_inputter']['input_mode'] != 'prefitted' :
    new_selector.fit(X, y)

## Transform to select features
selected_names = None
if "$output_method_selector.selected_method" == "fit_transform":
    res = new_selector.transform(X)
    if features_has_header:
        selected_names = input_df.columns[new_selector.get_support(indices=True)]
else:
    res = new_selector.get_support(params["output_method_selector"]["indices"])

res = pandas.DataFrame(res, columns = selected_names)
res.to_csv(path_or_buf="$outfile", sep='\t', index=False)


            ]]>
        </configfile>
    </configfiles>
    <inputs>
        <expand macro="feature_selection_all">
            <expand macro="fs_selectfrommodel_prefitted"/>
        </expand>
        <expand macro="feature_selection_output_mothods" />
        <expand macro="sl_mixed_input"/>
    </inputs>
    <outputs>
        <data format="tabular" name="outfile"/>
    </outputs>
    <tests>
        <test>
            <param name="selected_algorithm" value="SelectFromModel"/>
            <param name="input_mode" value="new"/>
            <param name="selected_module" value="ensemble"/>
            <param name="selected_estimator" value="RandomForestRegressor"/>
            <param name="text_params" value="n_estimators=10, random_state=10"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="6"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result01"/>
        </test>
        <test>
            <param name="selected_algorithm" value="GenericUnivariateSelect"/>
            <param name="param" value="20"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result02"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectPercentile"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result03"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectKBest"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result04"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFpr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result05"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFdr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result06"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFwe"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result07"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFE"/>
            <param name="input_mode" value="new"/>
            <param name="selected_module" value="ensemble"/>
            <param name="selected_estimator" value="RandomForestRegressor"/>
            <param name="text_params" value="n_estimators=10, random_state=10"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="6"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result08"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFECV"/>
            <param name="input_mode" value="new"/>
            <param name="selected_module" value="ensemble"/>
            <param name="selected_estimator" value="RandomForestRegressor"/>
            <param name="text_params" value="n_estimators=10, random_state=10"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="6"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result09"/>
        </test>
        <test>
            <param name="selected_algorithm" value="VarianceThreshold"/>
            <param name="threshold" value="0.1"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result10"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectKBest"/>
            <param name="k" value="3"/>
            <param name="infile1" value="test3.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="selected_column_selector_option" value="all_but_by_header_name"/>
            <param name="col1" value="target"/>
            <param name="infile2" value="test3.tabular" ftype="tabular"/>
            <param name="header2" value="True"/>
            <param name="selected_column_selector_option2" value="by_header_name"/>
            <param name="col2" value="target"/>
            <output name="outfile" file="feature_selection_result11"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFromModel"/>
            <param name="input_mode" value="prefitted"/>
            <param name="fitted_estimator" value="rfr_model01" ftype="zip"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result12"/>
        </test>
    </tests>
    <help>
        <![CDATA[
**What it does**
This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on
sklearn.metrics package.
For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_.

.. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
        ]]>
    </help>
    <expand macro="sklearn_citation">
        <expand macro="skrebate_citation"/>
        <expand macro="xgboost_citation"/>
    </expand>
</tool>