Mercurial > repos > bgruening > sklearn_feature_selection
view feature_selection.xml @ 4:44e26f8a82c6 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 97c4f22cdcfa6cddeeffc7b102c418a7ff12a888
author | bgruening |
---|---|
date | Tue, 05 Jun 2018 06:46:40 -0400 |
parents | 3a1acc39b39b |
children | 2d681d0f9393 |
line wrap: on
line source
<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@.1"> <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description> <macros> <import>main_macros.xml</import> </macros> <expand macro="python_requirements"/> <expand macro="macro_stdio"/> <version_command>echo "@VERSION@"</version_command> <command> <![CDATA[ python "$feature_selection_script" '$inputs' ]]> </command> <configfiles> <inputs name="inputs" /> <configfile name="feature_selection_script"> <![CDATA[ import sys import json import pandas import pickle import numpy as np import sklearn.feature_selection from sklearn import svm, linear_model, ensemble @COLUMNS_FUNCTION@ @FEATURE_SELECTOR_FUNCTION@ input_json_path = sys.argv[1] params = json.load(open(input_json_path, "r")) ## Read features features_has_header = params["input_options"]["header1"] input_type = params["input_options"]["selected_input"] if input_type=="tabular": header = 'infer' if features_has_header else None column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] if column_option == "by_index_number": c = params["input_options"]["column_selector_options_1"]["col1"] else: c = None X, input_df = read_columns( "$input_options.infile1", c = c, c_option = column_option, return_df = True, sep='\t', header=header, parse_dates=True ) else: X = mmread(open("$input_options.infile1", 'r')) ## Read labels header = 'infer' if params["input_options"]["header2"] else None column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] if column_option == "by_index_number": c = params["input_options"]["column_selector_options_2"]["col2"] else: c = None y = read_columns( "$input_options.infile2", c = c, c_option = column_option, sep='\t', header=header, parse_dates=True ) y=y.ravel() ## Create feature selector new_selector = feature_selector(params['feature_selection_algorithms']) if params['feature_selection_algorithms']['selected_algorithm'] != 'SelectFromModel' or \ 'extra_estimator' not in params['feature_selection_algorithms'] or \ params['feature_selection_algorithms']['extra_estimator']['has_estimator'] != 'no_load' : new_selector.fit(X, y) ## Transform to select features selected_names = None if "$select_methods.selected_method" == "fit_transform": res = new_selector.transform(X) if features_has_header: selected_names = input_df.columns[new_selector.get_support(indices=True)] else: res = new_selector.get_support(params["select_methods"]["indices"]) res = pandas.DataFrame(res, columns = selected_names) res.to_csv(path_or_buf="$outfile", sep='\t', index=False) ]]> </configfile> </configfiles> <inputs> <expand macro="feature_selection_all" /> <expand macro="feature_selection_methods" /> <expand macro="sl_mixed_input"/> </inputs> <outputs> <data format="tabular" name="outfile"/> </outputs> <tests> <test> <param name="selected_algorithm" value="SelectFromModel"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result01"/> </test> <test> <param name="selected_algorithm" value="GenericUnivariateSelect"/> <param name="param" value="20"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result02"/> </test> <test> <param name="selected_algorithm" value="SelectPercentile"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result03"/> </test> <test> <param name="selected_algorithm" value="SelectKBest"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result04"/> </test> <test> <param name="selected_algorithm" value="SelectFpr"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result05"/> </test> <test> <param name="selected_algorithm" value="SelectFdr"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result06"/> </test> <test> <param name="selected_algorithm" value="SelectFwe"/> <param name="alpha" value="0.05"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result07"/> </test> <test> <param name="selected_algorithm" value="RFE"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result08"/> </test> <test> <param name="selected_algorithm" value="RFECV"/> <param name="has_estimator" value="no"/> <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result09"/> </test> <test> <param name="selected_algorithm" value="VarianceThreshold"/> <param name="threshold" value="0.1"/> <param name="infile1" value="regression_X.tabular" ftype="tabular"/> <param name="header1" value="True"/> <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/> <param name="infile2" value="regression_y.tabular" ftype="tabular"/> <param name="col2" value="1"/> <param name="header2" value="True"/> <output name="outfile" file="feature_selection_result10"/> </test> </tests> <help> <![CDATA[ **What it does** This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on sklearn.metrics package. For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_. .. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics ]]> </help> <expand macro="sklearn_citation"/> </tool>