view feature_selection.xml @ 4:44e26f8a82c6 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 97c4f22cdcfa6cddeeffc7b102c418a7ff12a888
author bgruening
date Tue, 05 Jun 2018 06:46:40 -0400
parents 3a1acc39b39b
children 2d681d0f9393
line wrap: on
line source

<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@.1">
    <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description>
    <macros>
        <import>main_macros.xml</import>
    </macros>
    <expand macro="python_requirements"/>
    <expand macro="macro_stdio"/>
    <version_command>echo "@VERSION@"</version_command>
    <command>
        <![CDATA[
        python "$feature_selection_script" '$inputs'
        ]]>
    </command>
    <configfiles>
        <inputs name="inputs" />
        <configfile name="feature_selection_script">
            <![CDATA[
import sys
import json
import pandas
import pickle
import numpy as np
import sklearn.feature_selection
from sklearn import svm, linear_model, ensemble

@COLUMNS_FUNCTION@

@FEATURE_SELECTOR_FUNCTION@

input_json_path = sys.argv[1]
params = json.load(open(input_json_path, "r"))

## Read features
features_has_header = params["input_options"]["header1"]
input_type = params["input_options"]["selected_input"]
if input_type=="tabular":
    header = 'infer' if features_has_header else None
    column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"]
    if column_option == "by_index_number":
        c = params["input_options"]["column_selector_options_1"]["col1"]
    else:
        c = None
    X, input_df = read_columns(
            "$input_options.infile1",
            c = c,
            c_option = column_option,
            return_df = True,
            sep='\t',
            header=header,
            parse_dates=True
    )
else:
    X = mmread(open("$input_options.infile1", 'r'))

## Read labels
header = 'infer' if params["input_options"]["header2"] else None
column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
if column_option == "by_index_number":
    c = params["input_options"]["column_selector_options_2"]["col2"]
else:
    c = None
y = read_columns(
        "$input_options.infile2",
        c = c,
        c_option = column_option,
        sep='\t',
        header=header,
        parse_dates=True
)
y=y.ravel()

## Create feature selector
new_selector = feature_selector(params['feature_selection_algorithms'])
if params['feature_selection_algorithms']['selected_algorithm'] != 'SelectFromModel' or \
        'extra_estimator' not in params['feature_selection_algorithms'] or \
        params['feature_selection_algorithms']['extra_estimator']['has_estimator'] != 'no_load' :
    new_selector.fit(X, y)

## Transform to select features
selected_names = None
if "$select_methods.selected_method" == "fit_transform":
    res = new_selector.transform(X)
    if features_has_header:
        selected_names = input_df.columns[new_selector.get_support(indices=True)]
else:
    res = new_selector.get_support(params["select_methods"]["indices"])

res = pandas.DataFrame(res, columns = selected_names)
res.to_csv(path_or_buf="$outfile", sep='\t', index=False)


            ]]>
        </configfile>
    </configfiles>
    <inputs>
        <expand macro="feature_selection_all" />
        <expand macro="feature_selection_methods" />
        <expand macro="sl_mixed_input"/>
    </inputs>
    <outputs>
        <data format="tabular" name="outfile"/>
    </outputs>
    <tests>
        <test>
            <param name="selected_algorithm" value="SelectFromModel"/>
            <param name="has_estimator" value="no"/>
            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result01"/>
        </test>
        <test>
            <param name="selected_algorithm" value="GenericUnivariateSelect"/>
            <param name="param" value="20"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result02"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectPercentile"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result03"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectKBest"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result04"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFpr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result05"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFdr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result06"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFwe"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result07"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFE"/>
            <param name="has_estimator" value="no"/>
            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result08"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFECV"/>
            <param name="has_estimator" value="no"/>
            <param name="new_estimator" value="ensemble.RandomForestRegressor(n_estimators = 1000, random_state = 42)"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result09"/>
        </test>
        <test>
            <param name="selected_algorithm" value="VarianceThreshold"/>
            <param name="threshold" value="0.1"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result10"/>
        </test>
    </tests>
    <help>
        <![CDATA[
**What it does**
This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on
sklearn.metrics package.
For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_.

.. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
        ]]>
    </help>
    <expand macro="sklearn_citation"/>
</tool>