view feature_selection.xml @ 11:9af844f24ef6 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit cfc9fe24b7975fc5838bb3e456646202898eb977
author bgruening
date Sat, 04 Aug 2018 17:36:15 -0400
parents 96f9b73327f2
children f8dfdb47508b
line wrap: on
line source

<tool id="sklearn_feature_selection" name="Feature Selection" version="@VERSION@.1">
    <description>module, including univariate filter selection methods and recursive feature elimination algorithm</description>
    <macros>
        <import>main_macros.xml</import>
    </macros>
    <expand macro="python_requirements"/>
    <expand macro="macro_stdio"/>
    <version_command>echo "@VERSION@"</version_command>
    <command>
        <![CDATA[
        python "$feature_selection_script" '$inputs'
        ]]>
    </command>
    <configfiles>
        <inputs name="inputs" />
        <configfile name="feature_selection_script">
            <![CDATA[
import sys
import json
import pandas
import pickle
import ast
import numpy as np
import xgboost
import sklearn.feature_selection
from sklearn import svm, linear_model, ensemble, naive_bayes, tree, neighbors

@COLUMNS_FUNCTION@
@GET_ESTIMATOR_FUNCTION@
@FEATURE_SELECTOR_FUNCTION@

input_json_path = sys.argv[1]
with open(input_json_path, "r") as param_handler:
    params = json.load(param_handler)

#handle cheetah
#if $fs_algorithm_selector.selected_algorithm == "SelectFromModel"\
        and $fs_algorithm_selector.model_inputter.input_mode == "prefitted":
params['fs_algorithm_selector']['model_inputter']['fitted_estimator'] =\
        "$fs_algorithm_selector.model_inputter.fitted_estimator"
#end if

# Read features
features_has_header = params["input_options"]["header1"]
input_type = params["input_options"]["selected_input"]
if input_type=="tabular":
    header = 'infer' if features_has_header else None
    column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"]
    if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
        c = params["input_options"]["column_selector_options_1"]["col1"]
    else:
        c = None
    X, input_df = read_columns(
            "$input_options.infile1",
            c = c,
            c_option = column_option,
            return_df = True,
            sep='\t',
            header=header,
            parse_dates=True
    )
else:
    X = mmread("$input_options.infile1")

# Read labels
header = 'infer' if params["input_options"]["header2"] else None
column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"]
if column_option in ["by_index_number", "all_but_by_index_number", "by_header_name", "all_but_by_header_name"]:
    c = params["input_options"]["column_selector_options_2"]["col2"]
else:
    c = None
y = read_columns(
        "$input_options.infile2",
        c = c,
        c_option = column_option,
        sep='\t',
        header=header,
        parse_dates=True
)
y=y.ravel()

# Create feature selector
new_selector = feature_selector(params['fs_algorithm_selector'])
if params['fs_algorithm_selector']['selected_algorithm'] != 'SelectFromModel'\
        or params['fs_algorithm_selector']['model_inputter']['input_mode'] != 'prefitted' :
    new_selector.fit(X, y)

## Transform to select features
selected_names = None
if "$output_method_selector.selected_method" == "fit_transform":
    res = new_selector.transform(X)
    if features_has_header:
        selected_names = input_df.columns[new_selector.get_support(indices=True)]
else:
    res = new_selector.get_support(params["output_method_selector"]["indices"])

res = pandas.DataFrame(res, columns = selected_names)
res.to_csv(path_or_buf="$outfile", sep='\t', index=False)


            ]]>
        </configfile>
    </configfiles>
    <inputs>
        <expand macro="feature_selection_all">
            <expand macro="fs_selectfrommodel_prefitted"/>
        </expand>
        <expand macro="feature_selection_output_mothods" />
        <expand macro="sl_mixed_input"/>
    </inputs>
    <outputs>
        <data format="tabular" name="outfile"/>
    </outputs>
    <tests>
        <test>
            <param name="selected_algorithm" value="SelectFromModel"/>
            <param name="input_mode" value="new"/>
            <param name="selected_module" value="ensemble"/>
            <param name="selected_estimator" value="RandomForestRegressor"/>
            <param name="text_params" value="'n_estimators': 10, 'random_state': 10"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="6"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result01"/>
        </test>
        <test>
            <param name="selected_algorithm" value="GenericUnivariateSelect"/>
            <param name="param" value="20"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result02"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectPercentile"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result03"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectKBest"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result04"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFpr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result05"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFdr"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result06"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFwe"/>
            <param name="alpha" value="0.05"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result07"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFE"/>
            <param name="input_mode" value="new"/>
            <param name="selected_module" value="ensemble"/>
            <param name="selected_estimator" value="RandomForestRegressor"/>
            <param name="text_params" value="'n_estimators': 10, 'random_state':10"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="6"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result08"/>
        </test>
        <test>
            <param name="selected_algorithm" value="RFECV"/>
            <param name="input_mode" value="new"/>
            <param name="selected_module" value="ensemble"/>
            <param name="selected_estimator" value="RandomForestRegressor"/>
            <param name="text_params" value="'n_estimators': 10, 'random_state':10"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="6"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result09"/>
        </test>
        <test>
            <param name="selected_algorithm" value="VarianceThreshold"/>
            <param name="threshold" value="0.1"/>
            <param name="infile1" value="regression_X.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17"/>
            <param name="infile2" value="regression_y.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="True"/>
            <output name="outfile" file="feature_selection_result10"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectKBest"/>
            <param name="k" value="3"/>
            <param name="infile1" value="test3.tabular" ftype="tabular"/>
            <param name="header1" value="True"/>
            <param name="selected_column_selector_option" value="all_but_by_header_name"/>
            <param name="col1" value="target"/>
            <param name="infile2" value="test3.tabular" ftype="tabular"/>
            <param name="header2" value="True"/>
            <param name="selected_column_selector_option2" value="by_header_name"/>
            <param name="col2" value="target"/>
            <output name="outfile" file="feature_selection_result11"/>
        </test>
        <test>
            <param name="selected_algorithm" value="SelectFromModel"/>
            <param name="input_mode" value="prefitted"/>
            <param name="fitted_estimator" value="rfr_model01" ftype="zip"/>
            <param name="infile1" value="regression_train.tabular" ftype="tabular"/>
            <param name="header1" value="false"/>
            <param name="col1" value="1,2,3,4,5"/>
            <param name="infile2" value="regression_train.tabular" ftype="tabular"/>
            <param name="col2" value="1"/>
            <param name="header2" value="false"/>
            <output name="outfile" file="feature_selection_result12"/>
        </test>
    </tests>
    <help>
        <![CDATA[
**What it does**
This tool provides several loss, score, and utility functions to measure classification performance. Some metrics might require probability estimates of the positive class, confidence values, or binary decisions values. This tool is based on
sklearn.metrics package.
For information about classification metric functions and their parameter settings please refer to `Scikit-learn classification metrics`_.

.. _`Scikit-learn classification metrics`: http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
        ]]>
    </help>
    <expand macro="sklearn_citation"/>
</tool>