Mercurial > repos > bgruening > sklearn_fitted_model_eval
comparison pca.py @ 5:c374098d4f5c draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2afb24f3c81d625312186750a714d702363012b5"
| author | bgruening |
|---|---|
| date | Thu, 01 Oct 2020 20:52:28 +0000 |
| parents | |
| children | fa1471b6c095 |
comparison
equal
deleted
inserted
replaced
| 4:044729657181 | 5:c374098d4f5c |
|---|---|
| 1 import argparse | |
| 2 import numpy as np | |
| 3 from sklearn.decomposition import PCA, IncrementalPCA, KernelPCA | |
| 4 from galaxy_ml.utils import read_columns | |
| 5 | |
| 6 def main(): | |
| 7 parser = argparse.ArgumentParser(description='RDKit screen') | |
| 8 parser.add_argument('-i', '--infile', | |
| 9 help="Input file") | |
| 10 parser.add_argument('--header', action='store_true', help="Include the header row or skip it") | |
| 11 parser.add_argument('-c', '--columns', type=str.lower, default='all', choices=['by_index_number', 'all_but_by_index_number',\ | |
| 12 'by_header_name', 'all_but_by_header_name', 'all_columns'], | |
| 13 help="Choose to select all columns, or exclude/include some") | |
| 14 parser.add_argument('-ci', '--column_indices', type=str.lower, | |
| 15 help="Choose to select all columns, or exclude/include some") | |
| 16 parser.add_argument('-n', '--number', nargs='?', type=int, default=None,\ | |
| 17 help="Number of components to keep. If not set, all components are kept") | |
| 18 parser.add_argument('--whiten', action='store_true', help="Whiten the components") | |
| 19 parser.add_argument('-t', '--pca_type', type=str.lower, default='classical', choices=['classical', 'incremental', 'kernel'], | |
| 20 help="Choose which flavour of PCA to use") | |
| 21 parser.add_argument('-s', '--svd_solver', type=str.lower, default='auto', choices=['auto', 'full', 'arpack', 'randomized'], | |
| 22 help="Choose the type of svd solver.") | |
| 23 parser.add_argument('-b', '--batch_size', nargs='?', type=int, default=None,\ | |
| 24 help="The number of samples to use for each batch") | |
| 25 parser.add_argument('-k', '--kernel', type=str.lower, default='linear',\ | |
| 26 choices=['linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'], | |
| 27 help="Choose the type of kernel.") | |
| 28 parser.add_argument('-g', '--gamma', nargs='?', type=float, default=None, | |
| 29 help='Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels') | |
| 30 parser.add_argument('-tol', '--tolerance', type=float, default=0.0, | |
| 31 help='Convergence tolerance for arpack. If 0, optimal value will be chosen by arpack') | |
| 32 parser.add_argument('-mi', '--max_iter', nargs='?', type=int, default=None,\ | |
| 33 help="Maximum number of iterations for arpack") | |
| 34 parser.add_argument('-d', '--degree', type=int, default=3,\ | |
| 35 help="Degree for poly kernels. Ignored by other kernels") | |
| 36 parser.add_argument('-cf', '--coef0', type=float, default=1.0, | |
| 37 help='Independent term in poly and sigmoid kernels') | |
| 38 parser.add_argument('-e', '--eigen_solver', type=str.lower, default='auto', choices=['auto', 'dense', 'arpack'], | |
| 39 help="Choose the type of eigen solver.") | |
| 40 parser.add_argument('-o', '--outfile', | |
| 41 help="Base name for output file (no extension).") | |
| 42 args = parser.parse_args() | |
| 43 | |
| 44 usecols = None | |
| 45 cols = [] | |
| 46 pca_params = {} | |
| 47 | |
| 48 if args.columns == 'by_index_number' or args.columns == 'all_but_by_index_number': | |
| 49 usecols = [int(i) for i in args.column_indices.split(',')] | |
| 50 elif args.columns == 'by_header_name' or args.columns == 'all_but_by_header_name': | |
| 51 usecols = args.column_indices | |
| 52 | |
| 53 header = 'infer' if args.header else None | |
| 54 | |
| 55 pca_input = read_columns( | |
| 56 f=args.infile, | |
| 57 c=usecols, | |
| 58 c_option=args.columns, | |
| 59 sep='\t', | |
| 60 header=header, | |
| 61 parse_dates=True, | |
| 62 encoding=None, | |
| 63 index_col=None) | |
| 64 | |
| 65 pca_params.update({'n_components': args.number}) | |
| 66 | |
| 67 if args.pca_type == 'classical': | |
| 68 pca_params.update({'svd_solver': args.svd_solver, 'whiten': args.whiten}) | |
| 69 if args.svd_solver == 'arpack': | |
| 70 pca_params.update({'tol': args.tolerance}) | |
| 71 pca = PCA() | |
| 72 | |
| 73 elif args.pca_type == 'incremental': | |
| 74 pca_params.update({'batch_size': args.batch_size, 'whiten': args.whiten}) | |
| 75 pca = IncrementalPCA() | |
| 76 | |
| 77 elif args.pca_type == 'kernel': | |
| 78 pca_params.update({'kernel': args.kernel, 'eigen_solver': args.eigen_solver, 'gamma': args.gamma}) | |
| 79 | |
| 80 if args.kernel == 'poly': | |
| 81 pca_params.update({'degree': args.degree, 'coef0': args.coef0}) | |
| 82 elif args.kernel == 'sigmoid': | |
| 83 pca_params.update({'coef0': args.coef0}) | |
| 84 elif args.kernel == 'precomputed': | |
| 85 pca_input = np.dot(pca_input, pca_input.T) | |
| 86 | |
| 87 if args.eigen_solver == 'arpack': | |
| 88 pca_params.update({'tol': args.tolerance, 'max_iter': args.max_iter}) | |
| 89 | |
| 90 pca = KernelPCA() | |
| 91 | |
| 92 print(pca_params) | |
| 93 pca.set_params(**pca_params) | |
| 94 pca_output = pca.fit_transform(pca_input) | |
| 95 np.savetxt(fname=args.outfile, X=pca_output, fmt='%.4f', delimiter='\t') | |
| 96 | |
| 97 | |
| 98 if __name__ == "__main__": | |
| 99 main() |
