Mercurial > repos > bgruening > sklearn_fitted_model_eval
comparison model_prediction.py @ 0:eaddff553324 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
| author | bgruening |
|---|---|
| date | Fri, 01 Nov 2019 17:15:22 -0400 |
| parents | |
| children | cf54bae8ad42 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:eaddff553324 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import numpy as np | |
| 4 import pandas as pd | |
| 5 import tabix | |
| 6 import warnings | |
| 7 | |
| 8 from scipy.io import mmread | |
| 9 from sklearn.pipeline import Pipeline | |
| 10 | |
| 11 from galaxy_ml.externals.selene_sdk.sequences import Genome | |
| 12 from galaxy_ml.utils import (load_model, read_columns, | |
| 13 get_module, try_get_attr) | |
| 14 | |
| 15 | |
| 16 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 17 | |
| 18 | |
| 19 def main(inputs, infile_estimator, outfile_predict, | |
| 20 infile_weights=None, infile1=None, | |
| 21 fasta_path=None, ref_seq=None, | |
| 22 vcf_path=None): | |
| 23 """ | |
| 24 Parameter | |
| 25 --------- | |
| 26 inputs : str | |
| 27 File path to galaxy tool parameter | |
| 28 | |
| 29 infile_estimator : strgit | |
| 30 File path to trained estimator input | |
| 31 | |
| 32 outfile_predict : str | |
| 33 File path to save the prediction results, tabular | |
| 34 | |
| 35 infile_weights : str | |
| 36 File path to weights input | |
| 37 | |
| 38 infile1 : str | |
| 39 File path to dataset containing features | |
| 40 | |
| 41 fasta_path : str | |
| 42 File path to dataset containing fasta file | |
| 43 | |
| 44 ref_seq : str | |
| 45 File path to dataset containing the reference genome sequence. | |
| 46 | |
| 47 vcf_path : str | |
| 48 File path to dataset containing variants info. | |
| 49 """ | |
| 50 warnings.filterwarnings('ignore') | |
| 51 | |
| 52 with open(inputs, 'r') as param_handler: | |
| 53 params = json.load(param_handler) | |
| 54 | |
| 55 # load model | |
| 56 with open(infile_estimator, 'rb') as est_handler: | |
| 57 estimator = load_model(est_handler) | |
| 58 | |
| 59 main_est = estimator | |
| 60 if isinstance(estimator, Pipeline): | |
| 61 main_est = estimator.steps[-1][-1] | |
| 62 if hasattr(main_est, 'config') and hasattr(main_est, 'load_weights'): | |
| 63 if not infile_weights or infile_weights == 'None': | |
| 64 raise ValueError("The selected model skeleton asks for weights, " | |
| 65 "but dataset for weights wan not selected!") | |
| 66 main_est.load_weights(infile_weights) | |
| 67 | |
| 68 # handle data input | |
| 69 input_type = params['input_options']['selected_input'] | |
| 70 # tabular input | |
| 71 if input_type == 'tabular': | |
| 72 header = 'infer' if params['input_options']['header1'] else None | |
| 73 column_option = (params['input_options'] | |
| 74 ['column_selector_options_1'] | |
| 75 ['selected_column_selector_option']) | |
| 76 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 77 'by_header_name', 'all_but_by_header_name']: | |
| 78 c = params['input_options']['column_selector_options_1']['col1'] | |
| 79 else: | |
| 80 c = None | |
| 81 | |
| 82 df = pd.read_csv(infile1, sep='\t', header=header, parse_dates=True) | |
| 83 | |
| 84 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 85 | |
| 86 if params['method'] == 'predict': | |
| 87 preds = estimator.predict(X) | |
| 88 else: | |
| 89 preds = estimator.predict_proba(X) | |
| 90 | |
| 91 # sparse input | |
| 92 elif input_type == 'sparse': | |
| 93 X = mmread(open(infile1, 'r')) | |
| 94 if params['method'] == 'predict': | |
| 95 preds = estimator.predict(X) | |
| 96 else: | |
| 97 preds = estimator.predict_proba(X) | |
| 98 | |
| 99 # fasta input | |
| 100 elif input_type == 'seq_fasta': | |
| 101 if not hasattr(estimator, 'data_batch_generator'): | |
| 102 raise ValueError( | |
| 103 "To do prediction on sequences in fasta input, " | |
| 104 "the estimator must be a `KerasGBatchClassifier`" | |
| 105 "equipped with data_batch_generator!") | |
| 106 pyfaidx = get_module('pyfaidx') | |
| 107 sequences = pyfaidx.Fasta(fasta_path) | |
| 108 n_seqs = len(sequences.keys()) | |
| 109 X = np.arange(n_seqs)[:, np.newaxis] | |
| 110 seq_length = estimator.data_batch_generator.seq_length | |
| 111 batch_size = getattr(estimator, 'batch_size', 32) | |
| 112 steps = (n_seqs + batch_size - 1) // batch_size | |
| 113 | |
| 114 seq_type = params['input_options']['seq_type'] | |
| 115 klass = try_get_attr( | |
| 116 'galaxy_ml.preprocessors', seq_type) | |
| 117 | |
| 118 pred_data_generator = klass( | |
| 119 fasta_path, seq_length=seq_length) | |
| 120 | |
| 121 if params['method'] == 'predict': | |
| 122 preds = estimator.predict( | |
| 123 X, data_generator=pred_data_generator, steps=steps) | |
| 124 else: | |
| 125 preds = estimator.predict_proba( | |
| 126 X, data_generator=pred_data_generator, steps=steps) | |
| 127 | |
| 128 # vcf input | |
| 129 elif input_type == 'variant_effect': | |
| 130 klass = try_get_attr('galaxy_ml.preprocessors', | |
| 131 'GenomicVariantBatchGenerator') | |
| 132 | |
| 133 options = params['input_options'] | |
| 134 options.pop('selected_input') | |
| 135 if options['blacklist_regions'] == 'none': | |
| 136 options['blacklist_regions'] = None | |
| 137 | |
| 138 pred_data_generator = klass( | |
| 139 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) | |
| 140 | |
| 141 pred_data_generator.fit() | |
| 142 | |
| 143 variants = pred_data_generator.variants | |
| 144 # TODO : remove the following block after galaxy-ml v0.7.13 | |
| 145 blacklist_tabix = getattr(pred_data_generator.reference_genome_, | |
| 146 '_blacklist_tabix', None) | |
| 147 clean_variants = [] | |
| 148 if blacklist_tabix: | |
| 149 start_radius = pred_data_generator.start_radius_ | |
| 150 end_radius = pred_data_generator.end_radius_ | |
| 151 | |
| 152 for chrom, pos, name, ref, alt, strand in variants: | |
| 153 center = pos + len(ref) // 2 | |
| 154 start = center - start_radius | |
| 155 end = center + end_radius | |
| 156 | |
| 157 if isinstance(pred_data_generator.reference_genome_, Genome): | |
| 158 if "chr" not in chrom: | |
| 159 chrom = "chr" + chrom | |
| 160 if "MT" in chrom: | |
| 161 chrom = chrom[:-1] | |
| 162 try: | |
| 163 rows = blacklist_tabix.query(chrom, start, end) | |
| 164 found = 0 | |
| 165 for row in rows: | |
| 166 found = 1 | |
| 167 break | |
| 168 if found: | |
| 169 continue | |
| 170 except tabix.TabixError: | |
| 171 pass | |
| 172 | |
| 173 clean_variants.append((chrom, pos, name, ref, alt, strand)) | |
| 174 else: | |
| 175 clean_variants = variants | |
| 176 | |
| 177 setattr(pred_data_generator, 'variants', clean_variants) | |
| 178 | |
| 179 variants = np.array(clean_variants) | |
| 180 # predict 1600 sample at once then write to file | |
| 181 gen_flow = pred_data_generator.flow(batch_size=1600) | |
| 182 | |
| 183 file_writer = open(outfile_predict, 'w') | |
| 184 header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', | |
| 185 'alt', 'strand']) | |
| 186 file_writer.write(header_row) | |
| 187 header_done = False | |
| 188 | |
| 189 steps_done = 0 | |
| 190 | |
| 191 # TODO: multiple threading | |
| 192 try: | |
| 193 while steps_done < len(gen_flow): | |
| 194 index_array = next(gen_flow.index_generator) | |
| 195 batch_X = gen_flow._get_batches_of_transformed_samples( | |
| 196 index_array) | |
| 197 | |
| 198 if params['method'] == 'predict': | |
| 199 batch_preds = estimator.predict( | |
| 200 batch_X, | |
| 201 # The presence of `pred_data_generator` below is to | |
| 202 # override model carrying data_generator if there | |
| 203 # is any. | |
| 204 data_generator=pred_data_generator) | |
| 205 else: | |
| 206 batch_preds = estimator.predict_proba( | |
| 207 batch_X, | |
| 208 # The presence of `pred_data_generator` below is to | |
| 209 # override model carrying data_generator if there | |
| 210 # is any. | |
| 211 data_generator=pred_data_generator) | |
| 212 | |
| 213 if batch_preds.ndim == 1: | |
| 214 batch_preds = batch_preds[:, np.newaxis] | |
| 215 | |
| 216 batch_meta = variants[index_array] | |
| 217 batch_out = np.column_stack([batch_meta, batch_preds]) | |
| 218 | |
| 219 if not header_done: | |
| 220 heads = np.arange(batch_preds.shape[-1]).astype(str) | |
| 221 heads_str = '\t'.join(heads) | |
| 222 file_writer.write("\t%s\n" % heads_str) | |
| 223 header_done = True | |
| 224 | |
| 225 for row in batch_out: | |
| 226 row_str = '\t'.join(row) | |
| 227 file_writer.write("%s\n" % row_str) | |
| 228 | |
| 229 steps_done += 1 | |
| 230 | |
| 231 finally: | |
| 232 file_writer.close() | |
| 233 # TODO: make api `pred_data_generator.close()` | |
| 234 pred_data_generator.close() | |
| 235 return 0 | |
| 236 # end input | |
| 237 | |
| 238 # output | |
| 239 if len(preds.shape) == 1: | |
| 240 rval = pd.DataFrame(preds, columns=['Predicted']) | |
| 241 else: | |
| 242 rval = pd.DataFrame(preds) | |
| 243 | |
| 244 rval.to_csv(outfile_predict, sep='\t', header=True, index=False) | |
| 245 | |
| 246 | |
| 247 if __name__ == '__main__': | |
| 248 aparser = argparse.ArgumentParser() | |
| 249 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 250 aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") | |
| 251 aparser.add_argument("-w", "--infile_weights", dest="infile_weights") | |
| 252 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 253 aparser.add_argument("-O", "--outfile_predict", dest="outfile_predict") | |
| 254 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 255 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 256 aparser.add_argument("-v", "--vcf_path", dest="vcf_path") | |
| 257 args = aparser.parse_args() | |
| 258 | |
| 259 main(args.inputs, args.infile_estimator, args.outfile_predict, | |
| 260 infile_weights=args.infile_weights, infile1=args.infile1, | |
| 261 fasta_path=args.fasta_path, ref_seq=args.ref_seq, | |
| 262 vcf_path=args.vcf_path) |
