Mercurial > repos > bgruening > sklearn_fitted_model_eval
comparison search_model_validation.py @ 0:eaddff553324 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
| author | bgruening |
|---|---|
| date | Fri, 01 Nov 2019 17:15:22 -0400 |
| parents | |
| children | cf54bae8ad42 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:eaddff553324 |
|---|---|
| 1 import argparse | |
| 2 import collections | |
| 3 import imblearn | |
| 4 import joblib | |
| 5 import json | |
| 6 import numpy as np | |
| 7 import pandas as pd | |
| 8 import pickle | |
| 9 import skrebate | |
| 10 import sklearn | |
| 11 import sys | |
| 12 import xgboost | |
| 13 import warnings | |
| 14 from imblearn import under_sampling, over_sampling, combine | |
| 15 from scipy.io import mmread | |
| 16 from mlxtend import classifier, regressor | |
| 17 from sklearn.base import clone | |
| 18 from sklearn import (cluster, compose, decomposition, ensemble, | |
| 19 feature_extraction, feature_selection, | |
| 20 gaussian_process, kernel_approximation, metrics, | |
| 21 model_selection, naive_bayes, neighbors, | |
| 22 pipeline, preprocessing, svm, linear_model, | |
| 23 tree, discriminant_analysis) | |
| 24 from sklearn.exceptions import FitFailedWarning | |
| 25 from sklearn.model_selection._validation import _score, cross_validate | |
| 26 from sklearn.model_selection import _search, _validation | |
| 27 | |
| 28 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | |
| 29 read_columns, try_get_attr, get_module) | |
| 30 | |
| 31 | |
| 32 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | |
| 33 setattr(_search, '_fit_and_score', _fit_and_score) | |
| 34 setattr(_validation, '_fit_and_score', _fit_and_score) | |
| 35 | |
| 36 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 37 CACHE_DIR = './cached' | |
| 38 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | |
| 39 'nthread', 'callbacks') | |
| 40 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | |
| 41 'CSVLogger', 'None') | |
| 42 | |
| 43 | |
| 44 def _eval_search_params(params_builder): | |
| 45 search_params = {} | |
| 46 | |
| 47 for p in params_builder['param_set']: | |
| 48 search_list = p['sp_list'].strip() | |
| 49 if search_list == '': | |
| 50 continue | |
| 51 | |
| 52 param_name = p['sp_name'] | |
| 53 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 54 print("Warning: `%s` is not eligible for search and was " | |
| 55 "omitted!" % param_name) | |
| 56 continue | |
| 57 | |
| 58 if not search_list.startswith(':'): | |
| 59 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 60 ev = safe_eval(search_list) | |
| 61 search_params[param_name] = ev | |
| 62 else: | |
| 63 # Have `:` before search list, asks for estimator evaluatio | |
| 64 safe_eval_es = SafeEval(load_estimators=True) | |
| 65 search_list = search_list[1:].strip() | |
| 66 # TODO maybe add regular express check | |
| 67 ev = safe_eval_es(search_list) | |
| 68 preprocessings = ( | |
| 69 preprocessing.StandardScaler(), preprocessing.Binarizer(), | |
| 70 preprocessing.MaxAbsScaler(), | |
| 71 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | |
| 72 preprocessing.PolynomialFeatures(), | |
| 73 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | |
| 74 feature_selection.GenericUnivariateSelect(), | |
| 75 feature_selection.SelectPercentile(), | |
| 76 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | |
| 77 feature_selection.SelectFwe(), | |
| 78 feature_selection.VarianceThreshold(), | |
| 79 decomposition.FactorAnalysis(random_state=0), | |
| 80 decomposition.FastICA(random_state=0), | |
| 81 decomposition.IncrementalPCA(), | |
| 82 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
| 83 decomposition.LatentDirichletAllocation( | |
| 84 random_state=0, n_jobs=N_JOBS), | |
| 85 decomposition.MiniBatchDictionaryLearning( | |
| 86 random_state=0, n_jobs=N_JOBS), | |
| 87 decomposition.MiniBatchSparsePCA( | |
| 88 random_state=0, n_jobs=N_JOBS), | |
| 89 decomposition.NMF(random_state=0), | |
| 90 decomposition.PCA(random_state=0), | |
| 91 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 92 decomposition.TruncatedSVD(random_state=0), | |
| 93 kernel_approximation.Nystroem(random_state=0), | |
| 94 kernel_approximation.RBFSampler(random_state=0), | |
| 95 kernel_approximation.AdditiveChi2Sampler(), | |
| 96 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
| 97 cluster.FeatureAgglomeration(), | |
| 98 skrebate.ReliefF(n_jobs=N_JOBS), | |
| 99 skrebate.SURF(n_jobs=N_JOBS), | |
| 100 skrebate.SURFstar(n_jobs=N_JOBS), | |
| 101 skrebate.MultiSURF(n_jobs=N_JOBS), | |
| 102 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
| 103 imblearn.under_sampling.ClusterCentroids( | |
| 104 random_state=0, n_jobs=N_JOBS), | |
| 105 imblearn.under_sampling.CondensedNearestNeighbour( | |
| 106 random_state=0, n_jobs=N_JOBS), | |
| 107 imblearn.under_sampling.EditedNearestNeighbours( | |
| 108 random_state=0, n_jobs=N_JOBS), | |
| 109 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
| 110 random_state=0, n_jobs=N_JOBS), | |
| 111 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
| 112 imblearn.under_sampling.InstanceHardnessThreshold( | |
| 113 random_state=0, n_jobs=N_JOBS), | |
| 114 imblearn.under_sampling.NearMiss( | |
| 115 random_state=0, n_jobs=N_JOBS), | |
| 116 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
| 117 random_state=0, n_jobs=N_JOBS), | |
| 118 imblearn.under_sampling.OneSidedSelection( | |
| 119 random_state=0, n_jobs=N_JOBS), | |
| 120 imblearn.under_sampling.RandomUnderSampler( | |
| 121 random_state=0), | |
| 122 imblearn.under_sampling.TomekLinks( | |
| 123 random_state=0, n_jobs=N_JOBS), | |
| 124 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
| 125 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
| 126 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
| 127 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 128 imblearn.over_sampling.BorderlineSMOTE( | |
| 129 random_state=0, n_jobs=N_JOBS), | |
| 130 imblearn.over_sampling.SMOTENC( | |
| 131 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
| 132 imblearn.combine.SMOTEENN(random_state=0), | |
| 133 imblearn.combine.SMOTETomek(random_state=0)) | |
| 134 newlist = [] | |
| 135 for obj in ev: | |
| 136 if obj is None: | |
| 137 newlist.append(None) | |
| 138 elif obj == 'all_0': | |
| 139 newlist.extend(preprocessings[0:35]) | |
| 140 elif obj == 'sk_prep_all': # no KernalCenter() | |
| 141 newlist.extend(preprocessings[0:7]) | |
| 142 elif obj == 'fs_all': | |
| 143 newlist.extend(preprocessings[7:14]) | |
| 144 elif obj == 'decomp_all': | |
| 145 newlist.extend(preprocessings[14:25]) | |
| 146 elif obj == 'k_appr_all': | |
| 147 newlist.extend(preprocessings[25:29]) | |
| 148 elif obj == 'reb_all': | |
| 149 newlist.extend(preprocessings[30:35]) | |
| 150 elif obj == 'imb_all': | |
| 151 newlist.extend(preprocessings[35:54]) | |
| 152 elif type(obj) is int and -1 < obj < len(preprocessings): | |
| 153 newlist.append(preprocessings[obj]) | |
| 154 elif hasattr(obj, 'get_params'): # user uploaded object | |
| 155 if 'n_jobs' in obj.get_params(): | |
| 156 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
| 157 else: | |
| 158 newlist.append(obj) | |
| 159 else: | |
| 160 sys.exit("Unsupported estimator type: %r" % (obj)) | |
| 161 | |
| 162 search_params[param_name] = newlist | |
| 163 | |
| 164 return search_params | |
| 165 | |
| 166 | |
| 167 def main(inputs, infile_estimator, infile1, infile2, | |
| 168 outfile_result, outfile_object=None, | |
| 169 outfile_weights=None, groups=None, | |
| 170 ref_seq=None, intervals=None, targets=None, | |
| 171 fasta_path=None): | |
| 172 """ | |
| 173 Parameter | |
| 174 --------- | |
| 175 inputs : str | |
| 176 File path to galaxy tool parameter | |
| 177 | |
| 178 infile_estimator : str | |
| 179 File path to estimator | |
| 180 | |
| 181 infile1 : str | |
| 182 File path to dataset containing features | |
| 183 | |
| 184 infile2 : str | |
| 185 File path to dataset containing target values | |
| 186 | |
| 187 outfile_result : str | |
| 188 File path to save the results, either cv_results or test result | |
| 189 | |
| 190 outfile_object : str, optional | |
| 191 File path to save searchCV object | |
| 192 | |
| 193 outfile_weights : str, optional | |
| 194 File path to save model weights | |
| 195 | |
| 196 groups : str | |
| 197 File path to dataset containing groups labels | |
| 198 | |
| 199 ref_seq : str | |
| 200 File path to dataset containing genome sequence file | |
| 201 | |
| 202 intervals : str | |
| 203 File path to dataset containing interval file | |
| 204 | |
| 205 targets : str | |
| 206 File path to dataset compressed target bed file | |
| 207 | |
| 208 fasta_path : str | |
| 209 File path to dataset containing fasta file | |
| 210 """ | |
| 211 warnings.simplefilter('ignore') | |
| 212 | |
| 213 with open(inputs, 'r') as param_handler: | |
| 214 params = json.load(param_handler) | |
| 215 | |
| 216 # conflict param checker | |
| 217 if params['outer_split']['split_mode'] == 'nested_cv' \ | |
| 218 and params['save'] != 'nope': | |
| 219 raise ValueError("Save best estimator is not possible for nested CV!") | |
| 220 | |
| 221 if not (params['search_schemes']['options']['refit']) \ | |
| 222 and params['save'] != 'nope': | |
| 223 raise ValueError("Save best estimator is not possible when refit " | |
| 224 "is False!") | |
| 225 | |
| 226 params_builder = params['search_schemes']['search_params_builder'] | |
| 227 | |
| 228 with open(infile_estimator, 'rb') as estimator_handler: | |
| 229 estimator = load_model(estimator_handler) | |
| 230 estimator_params = estimator.get_params() | |
| 231 | |
| 232 # store read dataframe object | |
| 233 loaded_df = {} | |
| 234 | |
| 235 input_type = params['input_options']['selected_input'] | |
| 236 # tabular input | |
| 237 if input_type == 'tabular': | |
| 238 header = 'infer' if params['input_options']['header1'] else None | |
| 239 column_option = (params['input_options']['column_selector_options_1'] | |
| 240 ['selected_column_selector_option']) | |
| 241 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 242 'by_header_name', 'all_but_by_header_name']: | |
| 243 c = params['input_options']['column_selector_options_1']['col1'] | |
| 244 else: | |
| 245 c = None | |
| 246 | |
| 247 df_key = infile1 + repr(header) | |
| 248 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 249 parse_dates=True) | |
| 250 loaded_df[df_key] = df | |
| 251 | |
| 252 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 253 # sparse input | |
| 254 elif input_type == 'sparse': | |
| 255 X = mmread(open(infile1, 'r')) | |
| 256 | |
| 257 # fasta_file input | |
| 258 elif input_type == 'seq_fasta': | |
| 259 pyfaidx = get_module('pyfaidx') | |
| 260 sequences = pyfaidx.Fasta(fasta_path) | |
| 261 n_seqs = len(sequences.keys()) | |
| 262 X = np.arange(n_seqs)[:, np.newaxis] | |
| 263 for param in estimator_params.keys(): | |
| 264 if param.endswith('fasta_path'): | |
| 265 estimator.set_params( | |
| 266 **{param: fasta_path}) | |
| 267 break | |
| 268 else: | |
| 269 raise ValueError( | |
| 270 "The selected estimator doesn't support " | |
| 271 "fasta file input! Please consider using " | |
| 272 "KerasGBatchClassifier with " | |
| 273 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 274 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 275 "in pipeline!") | |
| 276 | |
| 277 elif input_type == 'refseq_and_interval': | |
| 278 path_params = { | |
| 279 'data_batch_generator__ref_genome_path': ref_seq, | |
| 280 'data_batch_generator__intervals_path': intervals, | |
| 281 'data_batch_generator__target_path': targets | |
| 282 } | |
| 283 estimator.set_params(**path_params) | |
| 284 n_intervals = sum(1 for line in open(intervals)) | |
| 285 X = np.arange(n_intervals)[:, np.newaxis] | |
| 286 | |
| 287 # Get target y | |
| 288 header = 'infer' if params['input_options']['header2'] else None | |
| 289 column_option = (params['input_options']['column_selector_options_2'] | |
| 290 ['selected_column_selector_option2']) | |
| 291 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 292 'by_header_name', 'all_but_by_header_name']: | |
| 293 c = params['input_options']['column_selector_options_2']['col2'] | |
| 294 else: | |
| 295 c = None | |
| 296 | |
| 297 df_key = infile2 + repr(header) | |
| 298 if df_key in loaded_df: | |
| 299 infile2 = loaded_df[df_key] | |
| 300 else: | |
| 301 infile2 = pd.read_csv(infile2, sep='\t', | |
| 302 header=header, parse_dates=True) | |
| 303 loaded_df[df_key] = infile2 | |
| 304 | |
| 305 y = read_columns( | |
| 306 infile2, | |
| 307 c=c, | |
| 308 c_option=column_option, | |
| 309 sep='\t', | |
| 310 header=header, | |
| 311 parse_dates=True) | |
| 312 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 313 y = y.ravel() | |
| 314 if input_type == 'refseq_and_interval': | |
| 315 estimator.set_params( | |
| 316 data_batch_generator__features=y.ravel().tolist()) | |
| 317 y = None | |
| 318 # end y | |
| 319 | |
| 320 optimizer = params['search_schemes']['selected_search_scheme'] | |
| 321 optimizer = getattr(model_selection, optimizer) | |
| 322 | |
| 323 # handle gridsearchcv options | |
| 324 options = params['search_schemes']['options'] | |
| 325 | |
| 326 if groups: | |
| 327 header = 'infer' if (options['cv_selector']['groups_selector'] | |
| 328 ['header_g']) else None | |
| 329 column_option = (options['cv_selector']['groups_selector'] | |
| 330 ['column_selector_options_g'] | |
| 331 ['selected_column_selector_option_g']) | |
| 332 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 333 'by_header_name', 'all_but_by_header_name']: | |
| 334 c = (options['cv_selector']['groups_selector'] | |
| 335 ['column_selector_options_g']['col_g']) | |
| 336 else: | |
| 337 c = None | |
| 338 | |
| 339 df_key = groups + repr(header) | |
| 340 if df_key in loaded_df: | |
| 341 groups = loaded_df[df_key] | |
| 342 | |
| 343 groups = read_columns( | |
| 344 groups, | |
| 345 c=c, | |
| 346 c_option=column_option, | |
| 347 sep='\t', | |
| 348 header=header, | |
| 349 parse_dates=True) | |
| 350 groups = groups.ravel() | |
| 351 options['cv_selector']['groups_selector'] = groups | |
| 352 | |
| 353 splitter, groups = get_cv(options.pop('cv_selector')) | |
| 354 options['cv'] = splitter | |
| 355 options['n_jobs'] = N_JOBS | |
| 356 primary_scoring = options['scoring']['primary_scoring'] | |
| 357 options['scoring'] = get_scoring(options['scoring']) | |
| 358 if options['error_score']: | |
| 359 options['error_score'] = 'raise' | |
| 360 else: | |
| 361 options['error_score'] = np.NaN | |
| 362 if options['refit'] and isinstance(options['scoring'], dict): | |
| 363 options['refit'] = primary_scoring | |
| 364 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | |
| 365 options['pre_dispatch'] = None | |
| 366 | |
| 367 # del loaded_df | |
| 368 del loaded_df | |
| 369 | |
| 370 # handle memory | |
| 371 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 372 # cache iraps_core fits could increase search speed significantly | |
| 373 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
| 374 estimator.set_params(memory=memory) | |
| 375 else: | |
| 376 # For iraps buried in pipeline | |
| 377 for p, v in estimator_params.items(): | |
| 378 if p.endswith('memory'): | |
| 379 # for case of `__irapsclassifier__memory` | |
| 380 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
| 381 # cache iraps_core fits could increase search | |
| 382 # speed significantly | |
| 383 new_params = {p: memory} | |
| 384 estimator.set_params(**new_params) | |
| 385 # security reason, we don't want memory being | |
| 386 # modified unexpectedly | |
| 387 elif v: | |
| 388 new_params = {p, None} | |
| 389 estimator.set_params(**new_params) | |
| 390 # For now, 1 CPU is suggested for iprasclassifier | |
| 391 elif p.endswith('n_jobs'): | |
| 392 new_params = {p: 1} | |
| 393 estimator.set_params(**new_params) | |
| 394 # for security reason, types of callbacks are limited | |
| 395 elif p.endswith('callbacks'): | |
| 396 for cb in v: | |
| 397 cb_type = cb['callback_selection']['callback_type'] | |
| 398 if cb_type not in ALLOWED_CALLBACKS: | |
| 399 raise ValueError( | |
| 400 "Prohibited callback type: %s!" % cb_type) | |
| 401 | |
| 402 param_grid = _eval_search_params(params_builder) | |
| 403 searcher = optimizer(estimator, param_grid, **options) | |
| 404 | |
| 405 # do nested split | |
| 406 split_mode = params['outer_split'].pop('split_mode') | |
| 407 # nested CV, outer cv using cross_validate | |
| 408 if split_mode == 'nested_cv': | |
| 409 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | |
| 410 | |
| 411 if options['error_score'] == 'raise': | |
| 412 rval = cross_validate( | |
| 413 searcher, X, y, scoring=options['scoring'], | |
| 414 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | |
| 415 error_score=options['error_score']) | |
| 416 else: | |
| 417 warnings.simplefilter('always', FitFailedWarning) | |
| 418 with warnings.catch_warnings(record=True) as w: | |
| 419 try: | |
| 420 rval = cross_validate( | |
| 421 searcher, X, y, | |
| 422 scoring=options['scoring'], | |
| 423 cv=outer_cv, n_jobs=N_JOBS, | |
| 424 verbose=0, | |
| 425 error_score=options['error_score']) | |
| 426 except ValueError: | |
| 427 pass | |
| 428 for warning in w: | |
| 429 print(repr(warning.message)) | |
| 430 | |
| 431 keys = list(rval.keys()) | |
| 432 for k in keys: | |
| 433 if k.startswith('test'): | |
| 434 rval['mean_' + k] = np.mean(rval[k]) | |
| 435 rval['std_' + k] = np.std(rval[k]) | |
| 436 if k.endswith('time'): | |
| 437 rval.pop(k) | |
| 438 rval = pd.DataFrame(rval) | |
| 439 rval = rval[sorted(rval.columns)] | |
| 440 rval.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 441 header=True, index=False) | |
| 442 else: | |
| 443 if split_mode == 'train_test_split': | |
| 444 train_test_split = try_get_attr( | |
| 445 'galaxy_ml.model_validations', 'train_test_split') | |
| 446 # make sure refit is choosen | |
| 447 # this could be True for sklearn models, but not the case for | |
| 448 # deep learning models | |
| 449 if not options['refit'] and \ | |
| 450 not all(hasattr(estimator, attr) | |
| 451 for attr in ('config', 'model_type')): | |
| 452 warnings.warn("Refit is change to `True` for nested " | |
| 453 "validation!") | |
| 454 setattr(searcher, 'refit', True) | |
| 455 split_options = params['outer_split'] | |
| 456 | |
| 457 # splits | |
| 458 if split_options['shuffle'] == 'stratified': | |
| 459 split_options['labels'] = y | |
| 460 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 461 elif split_options['shuffle'] == 'group': | |
| 462 if groups is None: | |
| 463 raise ValueError("No group based CV option was " | |
| 464 "choosen for group shuffle!") | |
| 465 split_options['labels'] = groups | |
| 466 if y is None: | |
| 467 X, X_test, groups, _ =\ | |
| 468 train_test_split(X, groups, **split_options) | |
| 469 else: | |
| 470 X, X_test, y, y_test, groups, _ =\ | |
| 471 train_test_split(X, y, groups, **split_options) | |
| 472 else: | |
| 473 if split_options['shuffle'] == 'None': | |
| 474 split_options['shuffle'] = None | |
| 475 X, X_test, y, y_test =\ | |
| 476 train_test_split(X, y, **split_options) | |
| 477 # end train_test_split | |
| 478 | |
| 479 # shared by both train_test_split and non-split | |
| 480 if options['error_score'] == 'raise': | |
| 481 searcher.fit(X, y, groups=groups) | |
| 482 else: | |
| 483 warnings.simplefilter('always', FitFailedWarning) | |
| 484 with warnings.catch_warnings(record=True) as w: | |
| 485 try: | |
| 486 searcher.fit(X, y, groups=groups) | |
| 487 except ValueError: | |
| 488 pass | |
| 489 for warning in w: | |
| 490 print(repr(warning.message)) | |
| 491 | |
| 492 # no outer split | |
| 493 if split_mode == 'no': | |
| 494 # save results | |
| 495 cv_results = pd.DataFrame(searcher.cv_results_) | |
| 496 cv_results = cv_results[sorted(cv_results.columns)] | |
| 497 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 498 header=True, index=False) | |
| 499 | |
| 500 # train_test_split, output test result using best_estimator_ | |
| 501 # or rebuild the trained estimator using weights if applicable. | |
| 502 else: | |
| 503 scorer_ = searcher.scorer_ | |
| 504 if isinstance(scorer_, collections.Mapping): | |
| 505 is_multimetric = True | |
| 506 else: | |
| 507 is_multimetric = False | |
| 508 | |
| 509 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
| 510 if not best_estimator_: | |
| 511 raise ValueError("GridSearchCV object has no " | |
| 512 "`best_estimator_` when `refit`=False!") | |
| 513 | |
| 514 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier' \ | |
| 515 and hasattr(estimator.data_batch_generator, 'target_path'): | |
| 516 test_score = best_estimator_.evaluate( | |
| 517 X_test, scorer=scorer_, is_multimetric=is_multimetric) | |
| 518 else: | |
| 519 test_score = _score(best_estimator_, X_test, | |
| 520 y_test, scorer_, | |
| 521 is_multimetric=is_multimetric) | |
| 522 | |
| 523 if not is_multimetric: | |
| 524 test_score = {primary_scoring: test_score} | |
| 525 for key, value in test_score.items(): | |
| 526 test_score[key] = [value] | |
| 527 result_df = pd.DataFrame(test_score) | |
| 528 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 529 header=True, index=False) | |
| 530 | |
| 531 memory.clear(warn=False) | |
| 532 | |
| 533 if outfile_object: | |
| 534 best_estimator_ = getattr(searcher, 'best_estimator_', None) | |
| 535 if not best_estimator_: | |
| 536 warnings.warn("GridSearchCV object has no attribute " | |
| 537 "'best_estimator_', because either it's " | |
| 538 "nested gridsearch or `refit` is False!") | |
| 539 return | |
| 540 | |
| 541 main_est = best_estimator_ | |
| 542 if isinstance(best_estimator_, pipeline.Pipeline): | |
| 543 main_est = best_estimator_.steps[-1][-1] | |
| 544 | |
| 545 if hasattr(main_est, 'model_') \ | |
| 546 and hasattr(main_est, 'save_weights'): | |
| 547 if outfile_weights: | |
| 548 main_est.save_weights(outfile_weights) | |
| 549 del main_est.model_ | |
| 550 del main_est.fit_params | |
| 551 del main_est.model_class_ | |
| 552 del main_est.validation_data | |
| 553 if getattr(main_est, 'data_generator_', None): | |
| 554 del main_est.data_generator_ | |
| 555 | |
| 556 with open(outfile_object, 'wb') as output_handler: | |
| 557 pickle.dump(best_estimator_, output_handler, | |
| 558 pickle.HIGHEST_PROTOCOL) | |
| 559 | |
| 560 | |
| 561 if __name__ == '__main__': | |
| 562 aparser = argparse.ArgumentParser() | |
| 563 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 564 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 565 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 566 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 567 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 568 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 569 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 570 aparser.add_argument("-g", "--groups", dest="groups") | |
| 571 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 572 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 573 aparser.add_argument("-t", "--targets", dest="targets") | |
| 574 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 575 args = aparser.parse_args() | |
| 576 | |
| 577 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
| 578 args.outfile_result, outfile_object=args.outfile_object, | |
| 579 outfile_weights=args.outfile_weights, groups=args.groups, | |
| 580 ref_seq=args.ref_seq, intervals=args.intervals, | |
| 581 targets=args.targets, fasta_path=args.fasta_path) |
