Mercurial > repos > bgruening > sklearn_fitted_model_eval
comparison train_test_split.py @ 0:eaddff553324 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit eb703290e2589561ea215c84aa9f71bcfe1712c6"
| author | bgruening |
|---|---|
| date | Fri, 01 Nov 2019 17:15:22 -0400 |
| parents | |
| children | fa1471b6c095 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:eaddff553324 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import pandas as pd | |
| 4 import warnings | |
| 5 | |
| 6 from galaxy_ml.model_validations import train_test_split | |
| 7 from galaxy_ml.utils import get_cv, read_columns | |
| 8 | |
| 9 | |
| 10 def _get_single_cv_split(params, array, infile_labels=None, | |
| 11 infile_groups=None): | |
| 12 """ output (train, test) subset from a cv splitter | |
| 13 | |
| 14 Parameters | |
| 15 ---------- | |
| 16 params : dict | |
| 17 Galaxy tool inputs | |
| 18 array : pandas DataFrame object | |
| 19 The target dataset to split | |
| 20 infile_labels : str | |
| 21 File path to dataset containing target values | |
| 22 infile_groups : str | |
| 23 File path to dataset containing group values | |
| 24 """ | |
| 25 y = None | |
| 26 groups = None | |
| 27 | |
| 28 nth_split = params['mode_selection']['nth_split'] | |
| 29 | |
| 30 # read groups | |
| 31 if infile_groups: | |
| 32 header = 'infer' if (params['mode_selection']['cv_selector'] | |
| 33 ['groups_selector']['header_g']) else None | |
| 34 column_option = (params['mode_selection']['cv_selector'] | |
| 35 ['groups_selector']['column_selector_options_g'] | |
| 36 ['selected_column_selector_option_g']) | |
| 37 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 38 'by_header_name', 'all_but_by_header_name']: | |
| 39 c = (params['mode_selection']['cv_selector']['groups_selector'] | |
| 40 ['column_selector_options_g']['col_g']) | |
| 41 else: | |
| 42 c = None | |
| 43 | |
| 44 groups = read_columns(infile_groups, c=c, c_option=column_option, | |
| 45 sep='\t', header=header, parse_dates=True) | |
| 46 groups = groups.ravel() | |
| 47 | |
| 48 params['mode_selection']['cv_selector']['groups_selector'] = groups | |
| 49 | |
| 50 # read labels | |
| 51 if infile_labels: | |
| 52 target_input = (params['mode_selection'] | |
| 53 ['cv_selector'].pop('target_input')) | |
| 54 header = 'infer' if target_input['header1'] else None | |
| 55 col_index = target_input['col'][0] - 1 | |
| 56 df = pd.read_csv(infile_labels, sep='\t', header=header, | |
| 57 parse_dates=True) | |
| 58 y = df.iloc[:, col_index].values | |
| 59 | |
| 60 # construct the cv splitter object | |
| 61 splitter, groups = get_cv(params['mode_selection']['cv_selector']) | |
| 62 | |
| 63 total_n_splits = splitter.get_n_splits(array.values, y=y, groups=groups) | |
| 64 if nth_split > total_n_splits: | |
| 65 raise ValueError("Total number of splits is {}, but got `nth_split` " | |
| 66 "= {}".format(total_n_splits, nth_split)) | |
| 67 | |
| 68 i = 1 | |
| 69 for train_index, test_index in splitter.split(array.values, y=y, groups=groups): | |
| 70 # suppose nth_split >= 1 | |
| 71 if i == nth_split: | |
| 72 break | |
| 73 else: | |
| 74 i += 1 | |
| 75 | |
| 76 train = array.iloc[train_index, :] | |
| 77 test = array.iloc[test_index, :] | |
| 78 | |
| 79 return train, test | |
| 80 | |
| 81 | |
| 82 def main(inputs, infile_array, outfile_train, outfile_test, | |
| 83 infile_labels=None, infile_groups=None): | |
| 84 """ | |
| 85 Parameter | |
| 86 --------- | |
| 87 inputs : str | |
| 88 File path to galaxy tool parameter | |
| 89 | |
| 90 infile_array : str | |
| 91 File paths of input arrays separated by comma | |
| 92 | |
| 93 infile_labels : str | |
| 94 File path to dataset containing labels | |
| 95 | |
| 96 infile_groups : str | |
| 97 File path to dataset containing groups | |
| 98 | |
| 99 outfile_train : str | |
| 100 File path to dataset containing train split | |
| 101 | |
| 102 outfile_test : str | |
| 103 File path to dataset containing test split | |
| 104 """ | |
| 105 warnings.simplefilter('ignore') | |
| 106 | |
| 107 with open(inputs, 'r') as param_handler: | |
| 108 params = json.load(param_handler) | |
| 109 | |
| 110 input_header = params['header0'] | |
| 111 header = 'infer' if input_header else None | |
| 112 array = pd.read_csv(infile_array, sep='\t', header=header, | |
| 113 parse_dates=True) | |
| 114 | |
| 115 # train test split | |
| 116 if params['mode_selection']['selected_mode'] == 'train_test_split': | |
| 117 options = params['mode_selection']['options'] | |
| 118 shuffle_selection = options.pop('shuffle_selection') | |
| 119 options['shuffle'] = shuffle_selection['shuffle'] | |
| 120 if infile_labels: | |
| 121 header = 'infer' if shuffle_selection['header1'] else None | |
| 122 col_index = shuffle_selection['col'][0] - 1 | |
| 123 df = pd.read_csv(infile_labels, sep='\t', header=header, | |
| 124 parse_dates=True) | |
| 125 labels = df.iloc[:, col_index].values | |
| 126 options['labels'] = labels | |
| 127 | |
| 128 train, test = train_test_split(array, **options) | |
| 129 | |
| 130 # cv splitter | |
| 131 else: | |
| 132 train, test = _get_single_cv_split(params, array, | |
| 133 infile_labels=infile_labels, | |
| 134 infile_groups=infile_groups) | |
| 135 | |
| 136 print("Input shape: %s" % repr(array.shape)) | |
| 137 print("Train shape: %s" % repr(train.shape)) | |
| 138 print("Test shape: %s" % repr(test.shape)) | |
| 139 train.to_csv(outfile_train, sep='\t', header=input_header, index=False) | |
| 140 test.to_csv(outfile_test, sep='\t', header=input_header, index=False) | |
| 141 | |
| 142 | |
| 143 if __name__ == '__main__': | |
| 144 aparser = argparse.ArgumentParser() | |
| 145 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 146 aparser.add_argument("-X", "--infile_array", dest="infile_array") | |
| 147 aparser.add_argument("-y", "--infile_labels", dest="infile_labels") | |
| 148 aparser.add_argument("-g", "--infile_groups", dest="infile_groups") | |
| 149 aparser.add_argument("-o", "--outfile_train", dest="outfile_train") | |
| 150 aparser.add_argument("-t", "--outfile_test", dest="outfile_test") | |
| 151 args = aparser.parse_args() | |
| 152 | |
| 153 main(args.inputs, args.infile_array, args.outfile_train, | |
| 154 args.outfile_test, args.infile_labels, args.infile_groups) |
