view fitted_model_eval.xml @ 16:bfc44324a773 draft

planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 80417bf0158a9b596e485dd66408f738f405145a
author bgruening
date Mon, 02 Oct 2023 10:18:55 +0000
parents 8e7622bf46e3
children
line wrap: on
line source

<tool id="sklearn_fitted_model_eval" name="Evaluate a Fitted Model" version="@VERSION@" profile="@PROFILE@">
    <description>using a new batch of labeled data</description>
    <macros>
        <import>main_macros.xml</import>
        <import>keras_macros.xml</import>
    </macros>
    <expand macro="python_requirements" />
    <expand macro="macro_stdio" />
    <version_command>echo "@VERSION@"</version_command>
    <command>
        <![CDATA[
        export HDF5_USE_FILE_LOCKING='FALSE';
        python '$__tool_directory__/fitted_model_eval.py'
            --inputs '$inputs'
            --infile_estimator '$infile_estimator'
            --outfile_eval '$outfile_eval'
            --infile1 '$input_options.infile1'
            --infile2 '$input_options.infile2'
        ]]>
    </command>
    <configfiles>
        <inputs name="inputs" />
    </configfiles>
    <inputs>
        <param name="infile_estimator" type="data" format="h5mlm" label="Choose the dataset containing pipeline/estimator object" />
        <expand macro="scoring_selection" />
        <conditional name="input_options">
            <expand macro="data_input_options" />
            <when value="tabular">
                <expand macro="samples_tabular" label1="Dataset containing features:" multiple1="true" multiple2="false" />
            </when>
            <when value="sparse">
                <expand macro="sparse_target" />
            </when>
    </conditional>
    </inputs>
    <outputs>
        <data format="tabular" name="outfile_eval" />
    </outputs>
    <tests>
        <test>
            <param name="infile_estimator" value="searchCV03" ftype="h5mlm" />
            <conditional name="scoring">
                <param name="primary_scoring" value="r2" />
            </conditional>
            <param name="infile1" value="train_test_split_test01.tabular" ftype="tabular" />
            <param name="header1" value="true" />
            <param name="col1" value="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17" />
            <param name="infile2" value="regression_y_split_test01.tabular" ftype="tabular" />
            <param name="header2" value="true" />
            <param name="col2" value="1" />
            <output name="outfile_eval" file="fitted_model_eval01.tabular" />
        </test>
    </tests>
    <help>
        <![CDATA[
**What it does**

Given a fitted estimator and a labeled dataset, this tool outputs the performances of the fitted estimator on the labeled dataset with selected scorers.

For the estimator, this tool supports fitted sklearn estimators and trained deep learning models. For input datasets, it supports the following:

- tabular

- sparse


**Output**

A tabular file containing performance scores,
e.g.:

======== ======== =========
accuracy f1_macro precision
======== ======== =========
 0.8613   0.6759   0.7928
======== ======== =========

        ]]>
    </help>
    <expand macro="sklearn_citation">
        <expand macro="keras_citation" />
        <expand macro="selene_citation" />
    </expand>
</tool>