Mercurial > repos > bgruening > sklearn_generalized_linear
comparison search_model_validation.py @ 24:b628de0d101f draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ab963ec9498bd05d2fb2f24f75adb2fccae7958c
author | bgruening |
---|---|
date | Wed, 15 May 2019 07:40:56 -0400 |
parents | e3bc646e63b2 |
children | 9d3a024cf2da |
comparison
equal
deleted
inserted
replaced
23:e3bc646e63b2 | 24:b628de0d101f |
---|---|
1 import argparse | |
2 import collections | |
1 import imblearn | 3 import imblearn |
2 import json | 4 import json |
3 import numpy as np | 5 import numpy as np |
4 import os | |
5 import pandas | 6 import pandas |
6 import pickle | 7 import pickle |
7 import skrebate | 8 import skrebate |
8 import sklearn | 9 import sklearn |
9 import sys | 10 import sys |
10 import xgboost | 11 import xgboost |
11 import warnings | 12 import warnings |
13 import iraps_classifier | |
14 import model_validations | |
15 import preprocessors | |
16 import feature_selectors | |
12 from imblearn import under_sampling, over_sampling, combine | 17 from imblearn import under_sampling, over_sampling, combine |
13 from imblearn.pipeline import Pipeline as imbPipeline | 18 from scipy.io import mmread |
14 from sklearn import (cluster, compose, decomposition, ensemble, feature_extraction, | 19 from mlxtend import classifier, regressor |
15 feature_selection, gaussian_process, kernel_approximation, metrics, | 20 from sklearn import (cluster, compose, decomposition, ensemble, |
16 model_selection, naive_bayes, neighbors, pipeline, preprocessing, | 21 feature_extraction, feature_selection, |
17 svm, linear_model, tree, discriminant_analysis) | 22 gaussian_process, kernel_approximation, metrics, |
23 model_selection, naive_bayes, neighbors, | |
24 pipeline, preprocessing, svm, linear_model, | |
25 tree, discriminant_analysis) | |
18 from sklearn.exceptions import FitFailedWarning | 26 from sklearn.exceptions import FitFailedWarning |
19 from sklearn.externals import joblib | 27 from sklearn.externals import joblib |
20 from utils import get_cv, get_scoring, get_X_y, load_model, read_columns, SafeEval | 28 from sklearn.model_selection._validation import _score |
21 | 29 |
22 | 30 from utils import (SafeEval, get_cv, get_scoring, get_X_y, |
23 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | 31 load_model, read_columns) |
24 | 32 from model_validations import train_test_split |
25 | 33 |
26 def get_search_params(params_builder): | 34 |
35 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
36 CACHE_DIR = './cached' | |
37 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', 'steps', | |
38 'nthread', 'verbose') | |
39 | |
40 | |
41 def _eval_search_params(params_builder): | |
27 search_params = {} | 42 search_params = {} |
28 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
29 safe_eval_es = SafeEval(load_estimators=True) | |
30 | 43 |
31 for p in params_builder['param_set']: | 44 for p in params_builder['param_set']: |
32 search_p = p['search_param_selector']['search_p'] | 45 search_list = p['sp_list'].strip() |
33 if search_p.strip() == '': | 46 if search_list == '': |
34 continue | 47 continue |
35 param_type = p['search_param_selector']['selected_param_type'] | 48 |
36 | 49 param_name = p['sp_name'] |
37 lst = search_p.split(':') | 50 if param_name.lower().endswith(NON_SEARCHABLE): |
38 assert (len(lst) == 2), "Error, make sure there is one and only one colon in search parameter input." | 51 print("Warning: `%s` is not eligible for search and was " |
39 literal = lst[1].strip() | 52 "omitted!" % param_name) |
40 param_name = lst[0].strip() | 53 continue |
41 if param_name: | 54 |
42 if param_name.lower() == 'n_jobs': | 55 if not search_list.startswith(':'): |
43 sys.exit("Parameter `%s` is invalid for search." %param_name) | 56 safe_eval = SafeEval(load_scipy=True, load_numpy=True) |
44 elif not param_name.endswith('-'): | 57 ev = safe_eval(search_list) |
45 ev = safe_eval(literal) | 58 search_params[param_name] = ev |
46 if param_type == 'final_estimator_p': | 59 else: |
47 search_params['estimator__' + param_name] = ev | 60 # Have `:` before search list, asks for estimator evaluatio |
48 else: | 61 safe_eval_es = SafeEval(load_estimators=True) |
49 search_params['preprocessing_' + param_type[5:6] + '__' + param_name] = ev | 62 search_list = search_list[1:].strip() |
50 else: | 63 # TODO maybe add regular express check |
51 # only for estimator eval, add `-` to the end of param | 64 ev = safe_eval_es(search_list) |
52 #TODO maybe add regular express check | 65 preprocessors = ( |
53 ev = safe_eval_es(literal) | 66 preprocessing.StandardScaler(), preprocessing.Binarizer(), |
54 for obj in ev: | 67 preprocessing.Imputer(), preprocessing.MaxAbsScaler(), |
55 if 'n_jobs' in obj.get_params(): | 68 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), |
56 obj.set_params( n_jobs=N_JOBS ) | 69 preprocessing.PolynomialFeatures(), |
57 if param_type == 'final_estimator_p': | 70 preprocessing.RobustScaler(), feature_selection.SelectKBest(), |
58 search_params['estimator__' + param_name[:-1]] = ev | 71 feature_selection.GenericUnivariateSelect(), |
59 else: | 72 feature_selection.SelectPercentile(), |
60 search_params['preprocessing_' + param_type[5:6] + '__' + param_name[:-1]] = ev | 73 feature_selection.SelectFpr(), feature_selection.SelectFdr(), |
61 elif param_type != 'final_estimator_p': | 74 feature_selection.SelectFwe(), |
62 #TODO regular express check ? | 75 feature_selection.VarianceThreshold(), |
63 ev = safe_eval_es(literal) | 76 decomposition.FactorAnalysis(random_state=0), |
64 preprocessors = [preprocessing.StandardScaler(), preprocessing.Binarizer(), preprocessing.Imputer(), | 77 decomposition.FastICA(random_state=0), |
65 preprocessing.MaxAbsScaler(), preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | 78 decomposition.IncrementalPCA(), |
66 preprocessing.PolynomialFeatures(),preprocessing.RobustScaler(), | 79 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), |
67 feature_selection.SelectKBest(), feature_selection.GenericUnivariateSelect(), | 80 decomposition.LatentDirichletAllocation( |
68 feature_selection.SelectPercentile(), feature_selection.SelectFpr(), feature_selection.SelectFdr(), | 81 random_state=0, n_jobs=N_JOBS), |
69 feature_selection.SelectFwe(), feature_selection.VarianceThreshold(), | 82 decomposition.MiniBatchDictionaryLearning( |
70 decomposition.FactorAnalysis(random_state=0), decomposition.FastICA(random_state=0), decomposition.IncrementalPCA(), | 83 random_state=0, n_jobs=N_JOBS), |
71 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), | 84 decomposition.MiniBatchSparsePCA( |
72 decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), | 85 random_state=0, n_jobs=N_JOBS), |
73 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), decomposition.NMF(random_state=0), | 86 decomposition.NMF(random_state=0), |
74 decomposition.PCA(random_state=0), decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | 87 decomposition.PCA(random_state=0), |
75 decomposition.TruncatedSVD(random_state=0), | 88 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), |
76 kernel_approximation.Nystroem(random_state=0), kernel_approximation.RBFSampler(random_state=0), | 89 decomposition.TruncatedSVD(random_state=0), |
77 kernel_approximation.AdditiveChi2Sampler(), kernel_approximation.SkewedChi2Sampler(random_state=0), | 90 kernel_approximation.Nystroem(random_state=0), |
78 cluster.FeatureAgglomeration(), | 91 kernel_approximation.RBFSampler(random_state=0), |
79 skrebate.ReliefF(n_jobs=N_JOBS), skrebate.SURF(n_jobs=N_JOBS), skrebate.SURFstar(n_jobs=N_JOBS), | 92 kernel_approximation.AdditiveChi2Sampler(), |
80 skrebate.MultiSURF(n_jobs=N_JOBS), skrebate.MultiSURFstar(n_jobs=N_JOBS), | 93 kernel_approximation.SkewedChi2Sampler(random_state=0), |
81 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), | 94 cluster.FeatureAgglomeration(), |
82 imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), | 95 skrebate.ReliefF(n_jobs=N_JOBS), |
83 imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | 96 skrebate.SURF(n_jobs=N_JOBS), |
84 imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | 97 skrebate.SURFstar(n_jobs=N_JOBS), |
85 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | 98 skrebate.MultiSURF(n_jobs=N_JOBS), |
86 imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), | 99 skrebate.MultiSURFstar(n_jobs=N_JOBS), |
87 imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), | 100 imblearn.under_sampling.ClusterCentroids( |
88 imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), | 101 random_state=0, n_jobs=N_JOBS), |
89 imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), | 102 imblearn.under_sampling.CondensedNearestNeighbour( |
90 imblearn.under_sampling.RandomUnderSampler(random_state=0), | 103 random_state=0, n_jobs=N_JOBS), |
91 imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), | 104 imblearn.under_sampling.EditedNearestNeighbours( |
92 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | 105 random_state=0, n_jobs=N_JOBS), |
93 imblearn.over_sampling.RandomOverSampler(random_state=0), | 106 imblearn.under_sampling.RepeatedEditedNearestNeighbours( |
94 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | 107 random_state=0, n_jobs=N_JOBS), |
95 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | 108 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), |
96 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), | 109 imblearn.under_sampling.InstanceHardnessThreshold( |
97 imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), | 110 random_state=0, n_jobs=N_JOBS), |
98 imblearn.combine.SMOTEENN(random_state=0), imblearn.combine.SMOTETomek(random_state=0)] | 111 imblearn.under_sampling.NearMiss( |
112 random_state=0, n_jobs=N_JOBS), | |
113 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
114 random_state=0, n_jobs=N_JOBS), | |
115 imblearn.under_sampling.OneSidedSelection( | |
116 random_state=0, n_jobs=N_JOBS), | |
117 imblearn.under_sampling.RandomUnderSampler( | |
118 random_state=0), | |
119 imblearn.under_sampling.TomekLinks( | |
120 random_state=0, n_jobs=N_JOBS), | |
121 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
122 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
123 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
124 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
125 imblearn.over_sampling.BorderlineSMOTE( | |
126 random_state=0, n_jobs=N_JOBS), | |
127 imblearn.over_sampling.SMOTENC( | |
128 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
129 imblearn.combine.SMOTEENN(random_state=0), | |
130 imblearn.combine.SMOTETomek(random_state=0)) | |
99 newlist = [] | 131 newlist = [] |
100 for obj in ev: | 132 for obj in ev: |
101 if obj is None: | 133 if obj is None: |
102 newlist.append(None) | 134 newlist.append(None) |
103 elif obj == 'all_0': | 135 elif obj == 'all_0': |
112 newlist.extend(preprocessors[26:30]) | 144 newlist.extend(preprocessors[26:30]) |
113 elif obj == 'reb_all': | 145 elif obj == 'reb_all': |
114 newlist.extend(preprocessors[31:36]) | 146 newlist.extend(preprocessors[31:36]) |
115 elif obj == 'imb_all': | 147 elif obj == 'imb_all': |
116 newlist.extend(preprocessors[36:55]) | 148 newlist.extend(preprocessors[36:55]) |
117 elif type(obj) is int and -1 < obj < len(preprocessors): | 149 elif type(obj) is int and -1 < obj < len(preprocessors): |
118 newlist.append(preprocessors[obj]) | 150 newlist.append(preprocessors[obj]) |
119 elif hasattr(obj, 'get_params'): # user object | 151 elif hasattr(obj, 'get_params'): # user uploaded object |
120 if 'n_jobs' in obj.get_params(): | 152 if 'n_jobs' in obj.get_params(): |
121 newlist.append( obj.set_params(n_jobs=N_JOBS) ) | 153 newlist.append(obj.set_params(n_jobs=N_JOBS)) |
122 else: | 154 else: |
123 newlist.append(obj) | 155 newlist.append(obj) |
124 else: | 156 else: |
125 sys.exit("Unsupported preprocessor type: %r" %(obj)) | 157 sys.exit("Unsupported estimator type: %r" % (obj)) |
126 search_params['preprocessing_' + param_type[5:6]] = newlist | 158 |
127 else: | 159 search_params[param_name] = newlist |
128 sys.exit("Parameter name of the final estimator can't be skipped!") | |
129 | 160 |
130 return search_params | 161 return search_params |
131 | 162 |
132 | 163 |
133 if __name__ == '__main__': | 164 def main(inputs, infile_estimator, infile1, infile2, |
165 outfile_result, outfile_object=None, groups=None): | |
166 """ | |
167 Parameter | |
168 --------- | |
169 inputs : str | |
170 File path to galaxy tool parameter | |
171 | |
172 infile_estimator : str | |
173 File path to estimator | |
174 | |
175 infile1 : str | |
176 File path to dataset containing features | |
177 | |
178 infile2 : str | |
179 File path to dataset containing target values | |
180 | |
181 outfile_result : str | |
182 File path to save the results, either cv_results or test result | |
183 | |
184 outfile_object : str, optional | |
185 File path to save searchCV object | |
186 | |
187 groups : str | |
188 File path to dataset containing groups labels | |
189 """ | |
134 | 190 |
135 warnings.simplefilter('ignore') | 191 warnings.simplefilter('ignore') |
136 | 192 |
137 input_json_path = sys.argv[1] | 193 with open(inputs, 'r') as param_handler: |
138 with open(input_json_path, 'r') as param_handler: | |
139 params = json.load(param_handler) | 194 params = json.load(param_handler) |
140 | 195 if groups: |
141 infile_pipeline = sys.argv[2] | 196 (params['search_schemes']['options']['cv_selector'] |
142 infile1 = sys.argv[3] | 197 ['groups_selector']['infile_g']) = groups |
143 infile2 = sys.argv[4] | |
144 outfile_result = sys.argv[5] | |
145 if len(sys.argv) > 6: | |
146 outfile_estimator = sys.argv[6] | |
147 else: | |
148 outfile_estimator = None | |
149 | 198 |
150 params_builder = params['search_schemes']['search_params_builder'] | 199 params_builder = params['search_schemes']['search_params_builder'] |
151 | 200 |
152 input_type = params['input_options']['selected_input'] | 201 input_type = params['input_options']['selected_input'] |
153 if input_type == 'tabular': | 202 if input_type == 'tabular': |
154 header = 'infer' if params['input_options']['header1'] else None | 203 header = 'infer' if params['input_options']['header1'] else None |
155 column_option = params['input_options']['column_selector_options_1']['selected_column_selector_option'] | 204 column_option = (params['input_options']['column_selector_options_1'] |
156 if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: | 205 ['selected_column_selector_option']) |
206 if column_option in ['by_index_number', 'all_but_by_index_number', | |
207 'by_header_name', 'all_but_by_header_name']: | |
157 c = params['input_options']['column_selector_options_1']['col1'] | 208 c = params['input_options']['column_selector_options_1']['col1'] |
158 else: | 209 else: |
159 c = None | 210 c = None |
160 X = read_columns( | 211 X = read_columns( |
161 infile1, | 212 infile1, |
162 c = c, | 213 c=c, |
163 c_option = column_option, | 214 c_option=column_option, |
164 sep='\t', | 215 sep='\t', |
165 header=header, | 216 header=header, |
166 parse_dates=True | 217 parse_dates=True).astype(float) |
167 ) | |
168 else: | 218 else: |
169 X = mmread(open(infile1, 'r')) | 219 X = mmread(open(infile1, 'r')) |
170 | 220 |
171 header = 'infer' if params['input_options']['header2'] else None | 221 header = 'infer' if params['input_options']['header2'] else None |
172 column_option = params['input_options']['column_selector_options_2']['selected_column_selector_option2'] | 222 column_option = (params['input_options']['column_selector_options_2'] |
173 if column_option in ['by_index_number', 'all_but_by_index_number', 'by_header_name', 'all_but_by_header_name']: | 223 ['selected_column_selector_option2']) |
224 if column_option in ['by_index_number', 'all_but_by_index_number', | |
225 'by_header_name', 'all_but_by_header_name']: | |
174 c = params['input_options']['column_selector_options_2']['col2'] | 226 c = params['input_options']['column_selector_options_2']['col2'] |
175 else: | 227 else: |
176 c = None | 228 c = None |
177 y = read_columns( | 229 y = read_columns( |
178 infile2, | 230 infile2, |
179 c = c, | 231 c=c, |
180 c_option = column_option, | 232 c_option=column_option, |
181 sep='\t', | 233 sep='\t', |
182 header=header, | 234 header=header, |
183 parse_dates=True | 235 parse_dates=True) |
184 ) | |
185 y = y.ravel() | 236 y = y.ravel() |
186 | 237 |
187 optimizer = params['search_schemes']['selected_search_scheme'] | 238 optimizer = params['search_schemes']['selected_search_scheme'] |
188 optimizer = getattr(model_selection, optimizer) | 239 optimizer = getattr(model_selection, optimizer) |
189 | 240 |
190 options = params['search_schemes']['options'] | 241 options = params['search_schemes']['options'] |
242 | |
191 splitter, groups = get_cv(options.pop('cv_selector')) | 243 splitter, groups = get_cv(options.pop('cv_selector')) |
192 if groups is None: | 244 options['cv'] = splitter |
193 options['cv'] = splitter | |
194 elif groups == '': | |
195 options['cv'] = list( splitter.split(X, y, groups=None) ) | |
196 else: | |
197 options['cv'] = list( splitter.split(X, y, groups=groups) ) | |
198 options['n_jobs'] = N_JOBS | 245 options['n_jobs'] = N_JOBS |
199 primary_scoring = options['scoring']['primary_scoring'] | 246 primary_scoring = options['scoring']['primary_scoring'] |
200 options['scoring'] = get_scoring(options['scoring']) | 247 options['scoring'] = get_scoring(options['scoring']) |
201 if options['error_score']: | 248 if options['error_score']: |
202 options['error_score'] = 'raise' | 249 options['error_score'] = 'raise' |
203 else: | 250 else: |
204 options['error_score'] = np.NaN | 251 options['error_score'] = np.NaN |
205 if options['refit'] and isinstance(options['scoring'], dict): | 252 if options['refit'] and isinstance(options['scoring'], dict): |
206 options['refit'] = 'primary' | 253 options['refit'] = primary_scoring |
207 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | 254 if 'pre_dispatch' in options and options['pre_dispatch'] == '': |
208 options['pre_dispatch'] = None | 255 options['pre_dispatch'] = None |
209 | 256 |
210 with open(infile_pipeline, 'rb') as pipeline_handler: | 257 with open(infile_estimator, 'rb') as estimator_handler: |
211 pipeline = load_model(pipeline_handler) | 258 estimator = load_model(estimator_handler) |
212 | 259 |
213 search_params = get_search_params(params_builder) | 260 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
214 searcher = optimizer(pipeline, search_params, **options) | 261 # cache iraps_core fits could increase search speed significantly |
262 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
263 estimator.set_params(memory=memory) | |
264 else: | |
265 for p, v in estimator.get_params().items(): | |
266 if p.endswith('memory'): | |
267 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
268 # cache iraps_core fits could increase search | |
269 # speed significantly | |
270 new_params = {p: memory} | |
271 estimator.set_params(**new_params) | |
272 elif v: | |
273 new_params = {p, None} | |
274 estimator.set_params(**new_params) | |
275 elif p.endswith('n_jobs'): | |
276 new_params = {p: 1} | |
277 estimator.set_params(**new_params) | |
278 | |
279 param_grid = _eval_search_params(params_builder) | |
280 searcher = optimizer(estimator, param_grid, **options) | |
281 | |
282 # do train_test_split | |
283 do_train_test_split = params['train_test_split'].pop('do_split') | |
284 if do_train_test_split == 'yes': | |
285 # make sure refit is choosen | |
286 if not options['refit']: | |
287 raise ValueError("Refit must be `True` for shuffle splitting!") | |
288 split_options = params['train_test_split'] | |
289 | |
290 # splits | |
291 if split_options['shuffle'] == 'stratified': | |
292 split_options['labels'] = y | |
293 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
294 elif split_options['shuffle'] == 'group': | |
295 if not groups: | |
296 raise ValueError("No group based CV option was " | |
297 "choosen for group shuffle!") | |
298 split_options['labels'] = groups | |
299 X, X_test, y, y_test, groups, _ =\ | |
300 train_test_split(X, y, **split_options) | |
301 else: | |
302 if split_options['shuffle'] == 'None': | |
303 split_options['shuffle'] = None | |
304 X, X_test, y, y_test =\ | |
305 train_test_split(X, y, **split_options) | |
306 # end train_test_split | |
215 | 307 |
216 if options['error_score'] == 'raise': | 308 if options['error_score'] == 'raise': |
217 searcher.fit(X, y) | 309 searcher.fit(X, y, groups=groups) |
218 else: | 310 else: |
219 warnings.simplefilter('always', FitFailedWarning) | 311 warnings.simplefilter('always', FitFailedWarning) |
220 with warnings.catch_warnings(record=True) as w: | 312 with warnings.catch_warnings(record=True) as w: |
221 try: | 313 try: |
222 searcher.fit(X, y) | 314 searcher.fit(X, y, groups=groups) |
223 except ValueError: | 315 except ValueError: |
224 pass | 316 pass |
225 for warning in w: | 317 for warning in w: |
226 print(repr(warning.message)) | 318 print(repr(warning.message)) |
227 | 319 |
228 cv_result = pandas.DataFrame(searcher.cv_results_) | 320 if do_train_test_split == 'no': |
229 cv_result.rename(inplace=True, columns={'mean_test_primary': 'mean_test_'+primary_scoring, 'rank_test_primary': 'rank_test_'+primary_scoring}) | 321 # save results |
230 cv_result.to_csv(path_or_buf=outfile_result, sep='\t', header=True, index=False) | 322 cv_results = pandas.DataFrame(searcher.cv_results_) |
231 | 323 cv_results = cv_results[sorted(cv_results.columns)] |
232 if outfile_estimator: | 324 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', |
233 with open(outfile_estimator, 'wb') as output_handler: | 325 header=True, index=False) |
234 pickle.dump(searcher.best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) | 326 |
327 # output test result using best_estimator_ | |
328 else: | |
329 best_estimator_ = searcher.best_estimator_ | |
330 if isinstance(options['scoring'], collections.Mapping): | |
331 is_multimetric = True | |
332 else: | |
333 is_multimetric = False | |
334 | |
335 test_score = _score(best_estimator_, X_test, | |
336 y_test, options['scoring'], | |
337 is_multimetric=is_multimetric) | |
338 if not is_multimetric: | |
339 test_score = {primary_scoring: test_score} | |
340 for key, value in test_score.items(): | |
341 test_score[key] = [value] | |
342 result_df = pandas.DataFrame(test_score) | |
343 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | |
344 header=True, index=False) | |
345 | |
346 memory.clear(warn=False) | |
347 | |
348 if outfile_object: | |
349 with open(outfile_object, 'wb') as output_handler: | |
350 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) | |
351 | |
352 | |
353 if __name__ == '__main__': | |
354 aparser = argparse.ArgumentParser() | |
355 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
356 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
357 aparser.add_argument("-X", "--infile1", dest="infile1") | |
358 aparser.add_argument("-y", "--infile2", dest="infile2") | |
359 aparser.add_argument("-r", "--outfile_result", dest="outfile_result") | |
360 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
361 aparser.add_argument("-g", "--groups", dest="groups") | |
362 args = aparser.parse_args() | |
363 | |
364 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
365 args.outfile_result, outfile_object=args.outfile_object, | |
366 groups=args.groups) |