Mercurial > repos > bgruening > sklearn_generalized_linear
diff generalized_linear.xml @ 21:212e7adfe65f draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 2a058459e6daf0486871f93845f00fdb4a4eaca1
author | bgruening |
---|---|
date | Sat, 29 Sep 2018 07:39:16 -0400 |
parents | 9b7d0655f70f |
children | e0f8931f6149 |
line wrap: on
line diff
--- a/generalized_linear.xml Thu Aug 23 16:20:19 2018 -0400 +++ b/generalized_linear.xml Sat Sep 29 07:39:16 2018 -0400 @@ -21,8 +21,9 @@ import pandas from scipy.io import mmread -execfile("$__tool_directory__/sk_whitelist.py") -execfile("$__tool_directory__/utils.py", globals()) +with open("$__tool_directory__/sk_whitelist.json", "r") as f: + sk_whitelist = json.load(f) +exec(open("$__tool_directory__/utils.py").read(), globals()) input_json_path = sys.argv[1] with open(input_json_path, "r") as param_handler: @@ -43,7 +44,7 @@ #else: with open("$selected_tasks.infile_model", 'rb') as model_handler: - classifier_object = SafePickler.load(model_handler) + classifier_object = load_model(model_handler) data = pandas.read_csv("$selected_tasks.infile_data", sep='\t', header=None, index_col=None, parse_dates=True, encoding=None, tupleize_cols=False ) prediction = classifier_object.predict(data) prediction_df = pandas.DataFrame(prediction, columns=["predicted"]) @@ -199,14 +200,7 @@ </when> </expand> </inputs> - <outputs> - <data format="tabular" name="outfile_predict"> - <filter>selected_tasks['selected_task'] == 'load'</filter> - </data> - <data format="zip" name="outfile_fit"> - <filter>selected_tasks['selected_task'] == 'train'</filter> - </data> - </outputs> + <expand macro="output"/> <tests> <test> <param name="infile1" value="regression_train.tabular" ftype="tabular"/> @@ -264,7 +258,6 @@ <param name="col2" value="6"/> <param name="selected_task" value="train"/> <param name="selected_algorithm" value="LinearRegression"/> - <param name="random_state" value="10"/> <output name="outfile_fit" file="glm_model04" compare="sim_size" delta="500"/> </test> <test>