Mercurial > repos > bgruening > sklearn_generalized_linear
diff generalized_linear.xml @ 35:602edec75e1d draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
author | bgruening |
---|---|
date | Tue, 13 Apr 2021 17:25:00 +0000 |
parents | a8c7b9fa426c |
children | fe181d613429 |
line wrap: on
line diff
--- a/generalized_linear.xml Thu Oct 01 19:58:28 2020 +0000 +++ b/generalized_linear.xml Tue Apr 13 17:25:00 2021 +0000 @@ -1,19 +1,18 @@ -<tool id="sklearn_generalized_linear" name="Generalized linear models" version="@VERSION@"> +<tool id="sklearn_generalized_linear" name="Generalized linear models" version="@VERSION@" profile="20.05"> <description>for classification and regression</description> <macros> <import>main_macros.xml</import> </macros> - <expand macro="python_requirements"/> - <expand macro="macro_stdio"/> + <expand macro="python_requirements" /> + <expand macro="macro_stdio" /> <version_command>echo "@VERSION@"</version_command> <command><![CDATA[ python "$glm_script" '$inputs' ]]> </command> <configfiles> - <inputs name="inputs"/> - <configfile name="glm_script"> -<![CDATA[ + <inputs name="inputs" /> + <configfile name="glm_script"><![CDATA[ import sys import json import numpy as np @@ -69,7 +68,7 @@ <option value="Perceptron">Perceptron</option> </param> <when value="SGDClassifier"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> <expand macro="loss"> <option value="hinge" selected="true">hinge</option> @@ -78,258 +77,276 @@ <option value="squared_hinge">squared hinge</option> <option value="perceptron">perceptron</option> </expand> - <expand macro="penalty"/> - <expand macro="alpha"/> - <expand macro="l1_ratio"/> - <expand macro="fit_intercept"/> + <expand macro="penalty" /> + <expand macro="alpha" /> + <expand macro="l1_ratio" /> + <expand macro="fit_intercept" /> <expand macro="n_iter_no_change" /> - <expand macro="shuffle"/> - <expand macro="epsilon"/> - <expand macro="learning_rate_s" selected1="true"/> - <expand macro="eta0"/> - <expand macro="power_t"/> + <expand macro="shuffle" /> + <expand macro="epsilon" /> + <expand macro="learning_rate_s" selected1="true" /> + <expand macro="eta0" /> + <expand macro="power_t" /> <!--class_weight--> - <expand macro="warm_start" checked="false"/> - <expand macro="random_state"/> + <expand macro="warm_start" checked="false" /> + <expand macro="random_state" /> <!--average--> </section> </when> <when value="SGDRegressor"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <expand macro="loss" select="true"/> - <expand macro="penalty"/> - <expand macro="alpha"/> - <expand macro="l1_ratio"/> - <expand macro="fit_intercept"/> + <expand macro="loss" select="true" /> + <expand macro="penalty" /> + <expand macro="alpha" /> + <expand macro="l1_ratio" /> + <expand macro="fit_intercept" /> <expand macro="n_iter_no_change" /> - <expand macro="shuffle"/> - <expand macro="epsilon"/> - <expand macro="learning_rate_s" selected2="true"/> - <expand macro="eta0" default_value="0.01"/> - <expand macro="power_t" default_value="0.25"/> - <expand macro="warm_start" checked="false"/> - <expand macro="random_state"/> + <expand macro="shuffle" /> + <expand macro="epsilon" /> + <expand macro="learning_rate_s" selected2="true" /> + <expand macro="eta0" default_value="0.01" /> + <expand macro="power_t" default_value="0.25" /> + <expand macro="warm_start" checked="false" /> + <expand macro="random_state" /> <!--average--> </section> </when> <when value="LinearRegression"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <expand macro="fit_intercept"/> - <expand macro="normalize"/> - <expand macro="copy_X"/> + <expand macro="fit_intercept" /> + <expand macro="normalize" /> + <expand macro="copy_X" /> </section> </when> <when value="RidgeClassifier"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <expand macro="ridge_params"/> + <expand macro="ridge_params" /> </section> </when> <when value="Ridge"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <expand macro="ridge_params"/> + <expand macro="ridge_params" /> </section> </when> <when value="LogisticRegression"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <expand macro="penalty"/> - <param argument="dual" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Use dual formulation" help=" "/> - <expand macro="tol" default_value="0.0001" help_text="Tolerance for stopping criteria. "/> - <expand macro="C"/> - <expand macro="fit_intercept"/> - <expand macro="max_iter" default_value="100"/> - <expand macro="warm_start" checked="false"/> + <expand macro="penalty" /> + <param argument="dual" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Use dual formulation" help=" " /> + <expand macro="tol" default_value="0.0001" help_text="Tolerance for stopping criteria. " /> + <expand macro="C" /> + <expand macro="fit_intercept" /> + <expand macro="max_iter" default_value="100" /> + <expand macro="warm_start" checked="false" /> <param argument="solver" type="select" label="Optimization algorithm" help=" "> <option value="liblinear" selected="true">liblinear</option> <option value="sag">sag</option> <option value="lbfgs">lbfgs</option> <option value="newton-cg">newton-cg</option> </param> - <param argument="intercept_scaling" type="float" value="1" label="Intercept scaling factor" help="Useful only if solver is liblinear. "/> + <param argument="intercept_scaling" type="float" value="1" label="Intercept scaling factor" help="Useful only if solver is liblinear. " /> <param argument="multi_class" type="select" label="Multiclass option" help="Works only for lbfgs solver. "> <option value="ovr" selected="true">ovr</option> <option value="multinomial">multinomial</option> </param> <!--class_weight--> - <expand macro="random_state"/> + <expand macro="random_state" /> </section> </when> <when value="LogisticRegressionCV"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <param argument="Cs" type="integer" value="10" label="Inverse of regularization strength" help="A grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. "/> - <param argument="dual" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Use dual formulation" help=" "/> - <param argument="cv" type="integer" optional="true" value="" label="Number of folds used in cross validation" help="If not set, the default cross-validation generator (Stratified K-Folds) is used. "/> - <expand macro="penalty"/> - <expand macro="tol" default_value="0.0001" help_text="Tolerance for stopping criteria. "/> - <expand macro="fit_intercept"/> - <expand macro="max_iter" default_value="100"/> + <param argument="Cs" type="integer" value="10" label="Inverse of regularization strength" help="A grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. " /> + <param argument="dual" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="false" label="Use dual formulation" help=" " /> + <param argument="cv" type="integer" optional="true" value="" label="Number of folds used in cross validation" help="If not set, the default cross-validation generator (Stratified K-Folds) is used. " /> + <expand macro="penalty" /> + <expand macro="tol" default_value="0.0001" help_text="Tolerance for stopping criteria. " /> + <expand macro="fit_intercept" /> + <expand macro="max_iter" default_value="100" /> <param argument="solver" type="select" label="Optimization algorithm" help=" "> <option value="liblinear" selected="true">liblinear</option> <option value="sag">sag</option> <option value="lbfgs">lbfgs</option> <option value="newton-cg">newton-cg</option> </param> - <param argument="intercept_scaling" type="float" value="1" label="Intercept scaling factor" help="Useful only if solver is liblinear. "/> + <param argument="intercept_scaling" type="float" value="1" label="Intercept scaling factor" help="Useful only if solver is liblinear. " /> <param argument="multi_class" type="select" label="Multiclass option" help="Works only for lbfgs solver. "> <option value="ovr" selected="true">ovr</option> <option value="multinomial">multinomial</option> </param> - <param argument="refit" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Average scores across all folds" help=" "/> - <expand macro="random_state"/> - <!--scoring=None> - <class_weight=None--> + <param argument="refit" type="boolean" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Average scores across all folds" help=" " /> + <expand macro="random_state" /> + <!--scoring=None> <class_weight=None--> </section> </when> <when value="Perceptron"> - <expand macro="sl_mixed_input"/> + <expand macro="sl_mixed_input" /> <section name="options" title="Advanced Options" expanded="False"> - <expand macro="penalty" default_value="none"/> - <expand macro="alpha"/> - <expand macro="fit_intercept"/> + <expand macro="penalty" default_value="none" /> + <expand macro="alpha" /> + <expand macro="fit_intercept" /> <expand macro="n_iter_no_change" /> - <expand macro="shuffle"/> - <expand macro="eta0" default_value="1"/> - <expand macro="warm_start" checked="false"/> - <expand macro="random_state" default_value="0"/> + <expand macro="shuffle" /> + <expand macro="eta0" default_value="1" /> + <expand macro="warm_start" checked="false" /> + <expand macro="random_state" default_value="0" /> <!--class_weight=None--> </section> </when> </expand> </inputs> - <expand macro="output"/> + <expand macro="output" /> <tests> <test> - <param name="infile1" value="regression_train.tabular" ftype="tabular"/> - <param name="infile2" value="regression_train.tabular" ftype="tabular"/> - <param name="selected_column_selector_option" value="all_but_by_index_number"/> - <param name="col1" value="6"/> - <param name="col2" value="6"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="SGDRegressor"/> - <param name="random_state" value="10"/> - <output name="outfile_fit" file="glm_model01" compare="sim_size" delta="5"/> + <param name="infile1" value="regression_train.tabular" ftype="tabular" /> + <param name="infile2" value="regression_train.tabular" ftype="tabular" /> + <param name="selected_column_selector_option" value="all_but_by_index_number" /> + <param name="col1" value="6" /> + <param name="col2" value="6" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="SGDRegressor" /> + <param name="random_state" value="10" /> + <output name="outfile_fit" file="glm_model01" compare="sim_size" delta="5" /> </test> <test> - <param name="infile_model" value="glm_model01" ftype="zip"/> - <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result01" lines_diff="4"/> + <param name="infile_model" value="glm_model01" ftype="zip" /> + <param name="infile_data" value="regression_test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="glm_result01" lines_diff="4" /> </test> <test> - <param name="infile1" value="train.tabular" ftype="tabular"/> - <param name="infile2" value="train.tabular" ftype="tabular"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="SGDClassifier"/> - <param name="random_state" value="10"/> - <output name="outfile_fit" file="glm_model02" compare="sim_size" delta="5"/> + <param name="infile1" value="train.tabular" ftype="tabular" /> + <param name="infile2" value="train.tabular" ftype="tabular" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="SGDClassifier" /> + <param name="random_state" value="10" /> + <output name="outfile_fit" file="glm_model02" compare="sim_size" delta="5" /> </test> <test> - <param name="infile_model" value="glm_model02" ftype="zip"/> - <param name="infile_data" value="test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result02"/> + <param name="infile_model" value="glm_model02" ftype="zip" /> + <param name="infile_data" value="test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="glm_result02" /> + </test> + <test> + <param name="infile1" value="train.tabular" ftype="tabular" /> + <param name="infile2" value="train.tabular" ftype="tabular" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="RidgeClassifier" /> + <param name="random_state" value="10" /> + <output name="outfile_fit" file="glm_model03" compare="sim_size" delta="5" /> </test> <test> - <param name="infile1" value="train.tabular" ftype="tabular"/> - <param name="infile2" value="train.tabular" ftype="tabular"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="RidgeClassifier"/> - <param name="random_state" value="10"/> - <output name="outfile_fit" file="glm_model03" compare="sim_size" delta="5"/> + <param name="infile_model" value="glm_model03" ftype="zip" /> + <param name="infile_data" value="test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="glm_result03" /> </test> <test> - <param name="infile_model" value="glm_model03" ftype="zip"/> - <param name="infile_data" value="test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result03"/> + <param name="infile1" value="regression_train.tabular" ftype="tabular" /> + <param name="infile2" value="regression_train.tabular" ftype="tabular" /> + <param name="col1" value="1,2,3,4,5" /> + <param name="col2" value="6" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="LinearRegression" /> + <output name="outfile_fit" file="glm_model04" compare="sim_size" delta="5" /> </test> <test> - <param name="infile1" value="regression_train.tabular" ftype="tabular"/> - <param name="infile2" value="regression_train.tabular" ftype="tabular"/> - <param name="col1" value="1,2,3,4,5"/> - <param name="col2" value="6"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="LinearRegression"/> - <output name="outfile_fit" file="glm_model04" compare="sim_size" delta="5"/> + <param name="infile_model" value="glm_model04" ftype="zip" /> + <param name="infile_data" value="regression_test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="glm_result04" lines_diff="8" /> </test> <test> - <param name="infile_model" value="glm_model04" ftype="zip"/> - <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result04" lines_diff="8"/> + <param name="infile1" value="train.tabular" ftype="tabular" /> + <param name="infile2" value="train.tabular" ftype="tabular" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="LogisticRegression" /> + <param name="random_state" value="10" /> + <output name="outfile_fit" file="glm_model05" compare="sim_size" delta="5" /> </test> <test> - <param name="infile1" value="train.tabular" ftype="tabular"/> - <param name="infile2" value="train.tabular" ftype="tabular"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="LogisticRegression"/> - <param name="random_state" value="10"/> - <output name="outfile_fit" file="glm_model05" compare="sim_size" delta="5"/> + <param name="infile_model" value="glm_model05" ftype="zip" /> + <param name="infile_data" value="test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="glm_result05" /> </test> <test> - <param name="infile_model" value="glm_model05" ftype="zip"/> - <param name="infile_data" value="test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result05"/> + <param name="infile1" value="train.tabular" ftype="tabular" /> + <param name="infile2" value="train.tabular" ftype="tabular" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="LogisticRegressionCV" /> + <param name="random_state" value="10" /> + <output name="outfile_fit" file="glm_model06" compare="sim_size" delta="5" /> </test> <test> - <param name="infile1" value="train.tabular" ftype="tabular"/> - <param name="infile2" value="train.tabular" ftype="tabular"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="LogisticRegressionCV"/> - <param name="random_state" value="10"/> - <output name="outfile_fit" file="glm_model06" compare="sim_size" delta="5"/> + <param name="infile_model" value="glm_model06" ftype="zip" /> + <param name="infile_data" value="test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="glm_result06" /> </test> <test> - <param name="infile_model" value="glm_model06" ftype="zip"/> - <param name="infile_data" value="test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result06"/> - </test> - <test> - <param name="infile1" value="regression_train.tabular" ftype="tabular"/> - <param name="infile2" value="regression_train.tabular" ftype="tabular"/> - <param name="col1" value="1,2,3,4,5"/> - <param name="col2" value="6"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="Ridge"/> - <param name="random_state" value="10"/> - <output name="outfile_fit" file="glm_model07" compare="sim_size" delta="5"/> + <param name="infile1" value="regression_train.tabular" ftype="tabular" /> + <param name="infile2" value="regression_train.tabular" ftype="tabular" /> + <param name="col1" value="1,2,3,4,5" /> + <param name="col2" value="6" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="Ridge" /> + <param name="random_state" value="10" /> + <output name="outfile_fit" file="glm_model07" compare="sim_size" delta="5" /> </test> <test> - <param name="infile_model" value="glm_model07" ftype="zip"/> - <param name="infile_data" value="regression_test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result07"/> + <param name="infile_model" value="glm_model07" ftype="zip" /> + <param name="infile_data" value="regression_test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict"> + <assert_contents> + <has_n_columns n="6" /> + <has_text text="86.9702122735000" /> + <has_text text="-1.0173960197" /> + <has_text text="0.64184687433" /> + <has_text text="-0.621522971207000" /> + <has_text text="0.39001218449" /> + <has_text text="0.596382816494397" /> + <has_text text="-47.4101632272" /> + <has_text text="-0.732777468453000" /> + <has_text text="-1.0610977011" /> + <has_text text="-1.099948005770000" /> + <has_text text="0.58565796301" /> + <has_text text="0.262144044202223" /> + <has_text text="-206.99829512" /> + <has_text text="0.7057412304" /> + <has_text text="-1.332209237379999" /> + </assert_contents> + </output> </test> <test> - <param name="infile1" value="train.tabular" ftype="tabular"/> - <param name="infile2" value="train.tabular" ftype="tabular"/> - <param name="col1" value="1,2,3,4"/> - <param name="col2" value="5"/> - <param name="selected_task" value="train"/> - <param name="selected_algorithm" value="Perceptron"/> - <param name="random_state" value="10"/> - <output name="outfile_fit" file="glm_model08" compare="sim_size" delta="5"/> + <param name="infile1" value="train.tabular" ftype="tabular" /> + <param name="infile2" value="train.tabular" ftype="tabular" /> + <param name="col1" value="1,2,3,4" /> + <param name="col2" value="5" /> + <param name="selected_task" value="train" /> + <param name="selected_algorithm" value="Perceptron" /> + <param name="random_state" value="10" /> + <output name="outfile_fit" file="glm_model08" compare="sim_size" delta="5" /> </test> <test> - <param name="infile_model" value="glm_model08" ftype="zip"/> - <param name="infile_data" value="test.tabular" ftype="tabular"/> - <param name="selected_task" value="load"/> - <output name="outfile_predict" file="glm_result08"/> + <param name="infile_model" value="glm_model08" ftype="zip" /> + <param name="infile_data" value="test.tabular" ftype="tabular" /> + <param name="selected_task" value="load" /> + <output name="outfile_predict" file="glm_result08" /> </test> </tests> <help><![CDATA[ @@ -396,6 +413,6 @@ **3 - Prediction output** The tool predicts the class labels for new samples and adds them as the last column to the prediction dataset. The new dataset then is output as a tabular file. The prediction output format should look like the training dataset. - ]]></help> - <expand macro="sklearn_citation"/> + ]]> </help> + <expand macro="sklearn_citation" /> </tool>