Mercurial > repos > bgruening > sklearn_generalized_linear
diff train_test_eval.py @ 26:9d3a024cf2da draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 60f0fbc0eafd7c11bc60fb6c77f2937782efd8a9-dirty
author | bgruening |
---|---|
date | Fri, 09 Aug 2019 07:07:13 -0400 |
parents | |
children | a9474cdda506 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/train_test_eval.py Fri Aug 09 07:07:13 2019 -0400 @@ -0,0 +1,433 @@ +import argparse +import joblib +import json +import numpy as np +import pandas as pd +import pickle +import warnings +from itertools import chain +from scipy.io import mmread +from sklearn.base import clone +from sklearn import (cluster, compose, decomposition, ensemble, + feature_extraction, feature_selection, + gaussian_process, kernel_approximation, metrics, + model_selection, naive_bayes, neighbors, + pipeline, preprocessing, svm, linear_model, + tree, discriminant_analysis) +from sklearn.exceptions import FitFailedWarning +from sklearn.metrics.scorer import _check_multimetric_scoring +from sklearn.model_selection._validation import _score, cross_validate +from sklearn.model_selection import _search, _validation +from sklearn.utils import indexable, safe_indexing + +from galaxy_ml.model_validations import train_test_split +from galaxy_ml.utils import (SafeEval, get_scoring, load_model, + read_columns, try_get_attr, get_module) + + +_fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') +setattr(_search, '_fit_and_score', _fit_and_score) +setattr(_validation, '_fit_and_score', _fit_and_score) + +N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) +CACHE_DIR = './cached' +NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', + 'nthread', 'callbacks') +ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', + 'CSVLogger', 'None') + + +def _eval_swap_params(params_builder): + swap_params = {} + + for p in params_builder['param_set']: + swap_value = p['sp_value'].strip() + if swap_value == '': + continue + + param_name = p['sp_name'] + if param_name.lower().endswith(NON_SEARCHABLE): + warnings.warn("Warning: `%s` is not eligible for search and was " + "omitted!" % param_name) + continue + + if not swap_value.startswith(':'): + safe_eval = SafeEval(load_scipy=True, load_numpy=True) + ev = safe_eval(swap_value) + else: + # Have `:` before search list, asks for estimator evaluatio + safe_eval_es = SafeEval(load_estimators=True) + swap_value = swap_value[1:].strip() + # TODO maybe add regular express check + ev = safe_eval_es(swap_value) + + swap_params[param_name] = ev + + return swap_params + + +def train_test_split_none(*arrays, **kwargs): + """extend train_test_split to take None arrays + and support split by group names. + """ + nones = [] + new_arrays = [] + for idx, arr in enumerate(arrays): + if arr is None: + nones.append(idx) + else: + new_arrays.append(arr) + + if kwargs['shuffle'] == 'None': + kwargs['shuffle'] = None + + group_names = kwargs.pop('group_names', None) + + if group_names is not None and group_names.strip(): + group_names = [name.strip() for name in + group_names.split(',')] + new_arrays = indexable(*new_arrays) + groups = kwargs['labels'] + n_samples = new_arrays[0].shape[0] + index_arr = np.arange(n_samples) + test = index_arr[np.isin(groups, group_names)] + train = index_arr[~np.isin(groups, group_names)] + rval = list(chain.from_iterable( + (safe_indexing(a, train), + safe_indexing(a, test)) for a in new_arrays)) + else: + rval = train_test_split(*new_arrays, **kwargs) + + for pos in nones: + rval[pos * 2: 2] = [None, None] + + return rval + + +def main(inputs, infile_estimator, infile1, infile2, + outfile_result, outfile_object=None, + outfile_weights=None, groups=None, + ref_seq=None, intervals=None, targets=None, + fasta_path=None): + """ + Parameter + --------- + inputs : str + File path to galaxy tool parameter + + infile_estimator : str + File path to estimator + + infile1 : str + File path to dataset containing features + + infile2 : str + File path to dataset containing target values + + outfile_result : str + File path to save the results, either cv_results or test result + + outfile_object : str, optional + File path to save searchCV object + + outfile_weights : str, optional + File path to save deep learning model weights + + groups : str + File path to dataset containing groups labels + + ref_seq : str + File path to dataset containing genome sequence file + + intervals : str + File path to dataset containing interval file + + targets : str + File path to dataset compressed target bed file + + fasta_path : str + File path to dataset containing fasta file + """ + warnings.simplefilter('ignore') + + with open(inputs, 'r') as param_handler: + params = json.load(param_handler) + + # load estimator + with open(infile_estimator, 'rb') as estimator_handler: + estimator = load_model(estimator_handler) + + # swap hyperparameter + swapping = params['experiment_schemes']['hyperparams_swapping'] + swap_params = _eval_swap_params(swapping) + estimator.set_params(**swap_params) + + estimator_params = estimator.get_params() + + # store read dataframe object + loaded_df = {} + + input_type = params['input_options']['selected_input'] + # tabular input + if input_type == 'tabular': + header = 'infer' if params['input_options']['header1'] else None + column_option = (params['input_options']['column_selector_options_1'] + ['selected_column_selector_option']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = params['input_options']['column_selector_options_1']['col1'] + else: + c = None + + df_key = infile1 + repr(header) + df = pd.read_csv(infile1, sep='\t', header=header, + parse_dates=True) + loaded_df[df_key] = df + + X = read_columns(df, c=c, c_option=column_option).astype(float) + # sparse input + elif input_type == 'sparse': + X = mmread(open(infile1, 'r')) + + # fasta_file input + elif input_type == 'seq_fasta': + pyfaidx = get_module('pyfaidx') + sequences = pyfaidx.Fasta(fasta_path) + n_seqs = len(sequences.keys()) + X = np.arange(n_seqs)[:, np.newaxis] + for param in estimator_params.keys(): + if param.endswith('fasta_path'): + estimator.set_params( + **{param: fasta_path}) + break + else: + raise ValueError( + "The selected estimator doesn't support " + "fasta file input! Please consider using " + "KerasGBatchClassifier with " + "FastaDNABatchGenerator/FastaProteinBatchGenerator " + "or having GenomeOneHotEncoder/ProteinOneHotEncoder " + "in pipeline!") + + elif input_type == 'refseq_and_interval': + path_params = { + 'data_batch_generator__ref_genome_path': ref_seq, + 'data_batch_generator__intervals_path': intervals, + 'data_batch_generator__target_path': targets + } + estimator.set_params(**path_params) + n_intervals = sum(1 for line in open(intervals)) + X = np.arange(n_intervals)[:, np.newaxis] + + # Get target y + header = 'infer' if params['input_options']['header2'] else None + column_option = (params['input_options']['column_selector_options_2'] + ['selected_column_selector_option2']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = params['input_options']['column_selector_options_2']['col2'] + else: + c = None + + df_key = infile2 + repr(header) + if df_key in loaded_df: + infile2 = loaded_df[df_key] + else: + infile2 = pd.read_csv(infile2, sep='\t', + header=header, parse_dates=True) + loaded_df[df_key] = infile2 + + y = read_columns( + infile2, + c=c, + c_option=column_option, + sep='\t', + header=header, + parse_dates=True) + if len(y.shape) == 2 and y.shape[1] == 1: + y = y.ravel() + if input_type == 'refseq_and_interval': + estimator.set_params( + data_batch_generator__features=y.ravel().tolist()) + y = None + # end y + + # load groups + if groups: + groups_selector = (params['experiment_schemes']['test_split'] + ['split_algos']).pop('groups_selector') + + header = 'infer' if groups_selector['header_g'] else None + column_option = \ + (groups_selector['column_selector_options_g'] + ['selected_column_selector_option_g']) + if column_option in ['by_index_number', 'all_but_by_index_number', + 'by_header_name', 'all_but_by_header_name']: + c = groups_selector['column_selector_options_g']['col_g'] + else: + c = None + + df_key = groups + repr(header) + if df_key in loaded_df: + groups = loaded_df[df_key] + + groups = read_columns( + groups, + c=c, + c_option=column_option, + sep='\t', + header=header, + parse_dates=True) + groups = groups.ravel() + + # del loaded_df + del loaded_df + + # handle memory + memory = joblib.Memory(location=CACHE_DIR, verbose=0) + # cache iraps_core fits could increase search speed significantly + if estimator.__class__.__name__ == 'IRAPSClassifier': + estimator.set_params(memory=memory) + else: + # For iraps buried in pipeline + new_params = {} + for p, v in estimator_params.items(): + if p.endswith('memory'): + # for case of `__irapsclassifier__memory` + if len(p) > 8 and p[:-8].endswith('irapsclassifier'): + # cache iraps_core fits could increase search + # speed significantly + new_params[p] = memory + # security reason, we don't want memory being + # modified unexpectedly + elif v: + new_params[p] = None + # handle n_jobs + elif p.endswith('n_jobs'): + # For now, 1 CPU is suggested for iprasclassifier + if len(p) > 8 and p[:-8].endswith('irapsclassifier'): + new_params[p] = 1 + else: + new_params[p] = N_JOBS + # for security reason, types of callback are limited + elif p.endswith('callbacks'): + for cb in v: + cb_type = cb['callback_selection']['callback_type'] + if cb_type not in ALLOWED_CALLBACKS: + raise ValueError( + "Prohibited callback type: %s!" % cb_type) + + estimator.set_params(**new_params) + + # handle scorer, convert to scorer dict + scoring = params['experiment_schemes']['metrics']['scoring'] + scorer = get_scoring(scoring) + scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) + + # handle test (first) split + test_split_options = (params['experiment_schemes'] + ['test_split']['split_algos']) + + if test_split_options['shuffle'] == 'group': + test_split_options['labels'] = groups + if test_split_options['shuffle'] == 'stratified': + if y is not None: + test_split_options['labels'] = y + else: + raise ValueError("Stratified shuffle split is not " + "applicable on empty target values!") + + X_train, X_test, y_train, y_test, groups_train, groups_test = \ + train_test_split_none(X, y, groups, **test_split_options) + + exp_scheme = params['experiment_schemes']['selected_exp_scheme'] + + # handle validation (second) split + if exp_scheme == 'train_val_test': + val_split_options = (params['experiment_schemes'] + ['val_split']['split_algos']) + + if val_split_options['shuffle'] == 'group': + val_split_options['labels'] = groups_train + if val_split_options['shuffle'] == 'stratified': + if y_train is not None: + val_split_options['labels'] = y_train + else: + raise ValueError("Stratified shuffle split is not " + "applicable on empty target values!") + + X_train, X_val, y_train, y_val, groups_train, groups_val = \ + train_test_split_none(X_train, y_train, groups_train, + **val_split_options) + + # train and eval + if hasattr(estimator, 'validation_data'): + if exp_scheme == 'train_val_test': + estimator.fit(X_train, y_train, + validation_data=(X_val, y_val)) + else: + estimator.fit(X_train, y_train, + validation_data=(X_test, y_test)) + else: + estimator.fit(X_train, y_train) + + if hasattr(estimator, 'evaluate'): + scores = estimator.evaluate(X_test, y_test=y_test, + scorer=scorer, + is_multimetric=True) + else: + scores = _score(estimator, X_test, y_test, scorer, + is_multimetric=True) + # handle output + for name, score in scores.items(): + scores[name] = [score] + df = pd.DataFrame(scores) + df = df[sorted(df.columns)] + df.to_csv(path_or_buf=outfile_result, sep='\t', + header=True, index=False) + + memory.clear(warn=False) + + if outfile_object: + main_est = estimator + if isinstance(estimator, pipeline.Pipeline): + main_est = estimator.steps[-1][-1] + + if hasattr(main_est, 'model_') \ + and hasattr(main_est, 'save_weights'): + if outfile_weights: + main_est.save_weights(outfile_weights) + del main_est.model_ + del main_est.fit_params + del main_est.model_class_ + del main_est.validation_data + if getattr(main_est, 'data_generator_', None): + del main_est.data_generator_ + del main_est.data_batch_generator + + with open(outfile_object, 'wb') as output_handler: + pickle.dump(estimator, output_handler, + pickle.HIGHEST_PROTOCOL) + + +if __name__ == '__main__': + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-e", "--estimator", dest="infile_estimator") + aparser.add_argument("-X", "--infile1", dest="infile1") + aparser.add_argument("-y", "--infile2", dest="infile2") + aparser.add_argument("-O", "--outfile_result", dest="outfile_result") + aparser.add_argument("-o", "--outfile_object", dest="outfile_object") + aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") + aparser.add_argument("-g", "--groups", dest="groups") + aparser.add_argument("-r", "--ref_seq", dest="ref_seq") + aparser.add_argument("-b", "--intervals", dest="intervals") + aparser.add_argument("-t", "--targets", dest="targets") + aparser.add_argument("-f", "--fasta_path", dest="fasta_path") + args = aparser.parse_args() + + main(args.inputs, args.infile_estimator, args.infile1, args.infile2, + args.outfile_result, outfile_object=args.outfile_object, + outfile_weights=args.outfile_weights, groups=args.groups, + ref_seq=args.ref_seq, intervals=args.intervals, + targets=args.targets, fasta_path=args.fasta_path)