Mercurial > repos > bgruening > sklearn_label_encoder
comparison search_model_validation.py @ 0:3b6ee54eb7e2 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
| author | bgruening |
|---|---|
| date | Sat, 01 May 2021 00:57:35 +0000 |
| parents | |
| children | 108141350edb |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:3b6ee54eb7e2 |
|---|---|
| 1 import argparse | |
| 2 import collections | |
| 3 import json | |
| 4 import os | |
| 5 import pickle | |
| 6 import sys | |
| 7 import warnings | |
| 8 | |
| 9 import imblearn | |
| 10 import joblib | |
| 11 import numpy as np | |
| 12 import pandas as pd | |
| 13 import skrebate | |
| 14 from galaxy_ml.utils import (clean_params, get_cv, | |
| 15 get_main_estimator, get_module, get_scoring, | |
| 16 load_model, read_columns, SafeEval, try_get_attr) | |
| 17 from scipy.io import mmread | |
| 18 from sklearn import (cluster, decomposition, feature_selection, | |
| 19 kernel_approximation, model_selection, preprocessing) | |
| 20 from sklearn.exceptions import FitFailedWarning | |
| 21 from sklearn.model_selection import _search, _validation | |
| 22 from sklearn.model_selection._validation import _score, cross_validate | |
| 23 | |
| 24 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
| 25 setattr(_search, "_fit_and_score", _fit_and_score) | |
| 26 setattr(_validation, "_fit_and_score", _fit_and_score) | |
| 27 | |
| 28 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
| 29 # handle disk cache | |
| 30 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
| 31 del os | |
| 32 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | |
| 33 | |
| 34 | |
| 35 def _eval_search_params(params_builder): | |
| 36 search_params = {} | |
| 37 | |
| 38 for p in params_builder["param_set"]: | |
| 39 search_list = p["sp_list"].strip() | |
| 40 if search_list == "": | |
| 41 continue | |
| 42 | |
| 43 param_name = p["sp_name"] | |
| 44 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 45 print( | |
| 46 "Warning: `%s` is not eligible for search and was " | |
| 47 "omitted!" % param_name | |
| 48 ) | |
| 49 continue | |
| 50 | |
| 51 if not search_list.startswith(":"): | |
| 52 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 53 ev = safe_eval(search_list) | |
| 54 search_params[param_name] = ev | |
| 55 else: | |
| 56 # Have `:` before search list, asks for estimator evaluatio | |
| 57 safe_eval_es = SafeEval(load_estimators=True) | |
| 58 search_list = search_list[1:].strip() | |
| 59 # TODO maybe add regular express check | |
| 60 ev = safe_eval_es(search_list) | |
| 61 preprocessings = ( | |
| 62 preprocessing.StandardScaler(), | |
| 63 preprocessing.Binarizer(), | |
| 64 preprocessing.MaxAbsScaler(), | |
| 65 preprocessing.Normalizer(), | |
| 66 preprocessing.MinMaxScaler(), | |
| 67 preprocessing.PolynomialFeatures(), | |
| 68 preprocessing.RobustScaler(), | |
| 69 feature_selection.SelectKBest(), | |
| 70 feature_selection.GenericUnivariateSelect(), | |
| 71 feature_selection.SelectPercentile(), | |
| 72 feature_selection.SelectFpr(), | |
| 73 feature_selection.SelectFdr(), | |
| 74 feature_selection.SelectFwe(), | |
| 75 feature_selection.VarianceThreshold(), | |
| 76 decomposition.FactorAnalysis(random_state=0), | |
| 77 decomposition.FastICA(random_state=0), | |
| 78 decomposition.IncrementalPCA(), | |
| 79 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
| 80 decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), | |
| 81 decomposition.MiniBatchDictionaryLearning( | |
| 82 random_state=0, n_jobs=N_JOBS | |
| 83 ), | |
| 84 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 85 decomposition.NMF(random_state=0), | |
| 86 decomposition.PCA(random_state=0), | |
| 87 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 88 decomposition.TruncatedSVD(random_state=0), | |
| 89 kernel_approximation.Nystroem(random_state=0), | |
| 90 kernel_approximation.RBFSampler(random_state=0), | |
| 91 kernel_approximation.AdditiveChi2Sampler(), | |
| 92 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
| 93 cluster.FeatureAgglomeration(), | |
| 94 skrebate.ReliefF(n_jobs=N_JOBS), | |
| 95 skrebate.SURF(n_jobs=N_JOBS), | |
| 96 skrebate.SURFstar(n_jobs=N_JOBS), | |
| 97 skrebate.MultiSURF(n_jobs=N_JOBS), | |
| 98 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
| 99 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), | |
| 100 imblearn.under_sampling.CondensedNearestNeighbour( | |
| 101 random_state=0, n_jobs=N_JOBS | |
| 102 ), | |
| 103 imblearn.under_sampling.EditedNearestNeighbours( | |
| 104 random_state=0, n_jobs=N_JOBS | |
| 105 ), | |
| 106 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
| 107 random_state=0, n_jobs=N_JOBS | |
| 108 ), | |
| 109 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
| 110 imblearn.under_sampling.InstanceHardnessThreshold( | |
| 111 random_state=0, n_jobs=N_JOBS | |
| 112 ), | |
| 113 imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), | |
| 114 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
| 115 random_state=0, n_jobs=N_JOBS | |
| 116 ), | |
| 117 imblearn.under_sampling.OneSidedSelection( | |
| 118 random_state=0, n_jobs=N_JOBS | |
| 119 ), | |
| 120 imblearn.under_sampling.RandomUnderSampler(random_state=0), | |
| 121 imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), | |
| 122 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
| 123 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
| 124 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
| 125 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 126 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 127 imblearn.over_sampling.SMOTENC( | |
| 128 categorical_features=[], random_state=0, n_jobs=N_JOBS | |
| 129 ), | |
| 130 imblearn.combine.SMOTEENN(random_state=0), | |
| 131 imblearn.combine.SMOTETomek(random_state=0), | |
| 132 ) | |
| 133 newlist = [] | |
| 134 for obj in ev: | |
| 135 if obj is None: | |
| 136 newlist.append(None) | |
| 137 elif obj == "all_0": | |
| 138 newlist.extend(preprocessings[0:35]) | |
| 139 elif obj == "sk_prep_all": # no KernalCenter() | |
| 140 newlist.extend(preprocessings[0:7]) | |
| 141 elif obj == "fs_all": | |
| 142 newlist.extend(preprocessings[7:14]) | |
| 143 elif obj == "decomp_all": | |
| 144 newlist.extend(preprocessings[14:25]) | |
| 145 elif obj == "k_appr_all": | |
| 146 newlist.extend(preprocessings[25:29]) | |
| 147 elif obj == "reb_all": | |
| 148 newlist.extend(preprocessings[30:35]) | |
| 149 elif obj == "imb_all": | |
| 150 newlist.extend(preprocessings[35:54]) | |
| 151 elif type(obj) is int and -1 < obj < len(preprocessings): | |
| 152 newlist.append(preprocessings[obj]) | |
| 153 elif hasattr(obj, "get_params"): # user uploaded object | |
| 154 if "n_jobs" in obj.get_params(): | |
| 155 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
| 156 else: | |
| 157 newlist.append(obj) | |
| 158 else: | |
| 159 sys.exit("Unsupported estimator type: %r" % (obj)) | |
| 160 | |
| 161 search_params[param_name] = newlist | |
| 162 | |
| 163 return search_params | |
| 164 | |
| 165 | |
| 166 def _handle_X_y( | |
| 167 estimator, | |
| 168 params, | |
| 169 infile1, | |
| 170 infile2, | |
| 171 loaded_df={}, | |
| 172 ref_seq=None, | |
| 173 intervals=None, | |
| 174 targets=None, | |
| 175 fasta_path=None, | |
| 176 ): | |
| 177 """read inputs | |
| 178 | |
| 179 Params | |
| 180 ------- | |
| 181 estimator : estimator object | |
| 182 params : dict | |
| 183 Galaxy tool parameter inputs | |
| 184 infile1 : str | |
| 185 File path to dataset containing features | |
| 186 infile2 : str | |
| 187 File path to dataset containing target values | |
| 188 loaded_df : dict | |
| 189 Contains loaded DataFrame objects with file path as keys | |
| 190 ref_seq : str | |
| 191 File path to dataset containing genome sequence file | |
| 192 interval : str | |
| 193 File path to dataset containing interval file | |
| 194 targets : str | |
| 195 File path to dataset compressed target bed file | |
| 196 fasta_path : str | |
| 197 File path to dataset containing fasta file | |
| 198 | |
| 199 | |
| 200 Returns | |
| 201 ------- | |
| 202 estimator : estimator object after setting new attributes | |
| 203 X : numpy array | |
| 204 y : numpy array | |
| 205 """ | |
| 206 estimator_params = estimator.get_params() | |
| 207 | |
| 208 input_type = params["input_options"]["selected_input"] | |
| 209 # tabular input | |
| 210 if input_type == "tabular": | |
| 211 header = "infer" if params["input_options"]["header1"] else None | |
| 212 column_option = params["input_options"]["column_selector_options_1"][ | |
| 213 "selected_column_selector_option" | |
| 214 ] | |
| 215 if column_option in [ | |
| 216 "by_index_number", | |
| 217 "all_but_by_index_number", | |
| 218 "by_header_name", | |
| 219 "all_but_by_header_name", | |
| 220 ]: | |
| 221 c = params["input_options"]["column_selector_options_1"]["col1"] | |
| 222 else: | |
| 223 c = None | |
| 224 | |
| 225 df_key = infile1 + repr(header) | |
| 226 | |
| 227 if df_key in loaded_df: | |
| 228 infile1 = loaded_df[df_key] | |
| 229 | |
| 230 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
| 231 loaded_df[df_key] = df | |
| 232 | |
| 233 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 234 # sparse input | |
| 235 elif input_type == "sparse": | |
| 236 X = mmread(open(infile1, "r")) | |
| 237 | |
| 238 # fasta_file input | |
| 239 elif input_type == "seq_fasta": | |
| 240 pyfaidx = get_module("pyfaidx") | |
| 241 sequences = pyfaidx.Fasta(fasta_path) | |
| 242 n_seqs = len(sequences.keys()) | |
| 243 X = np.arange(n_seqs)[:, np.newaxis] | |
| 244 for param in estimator_params.keys(): | |
| 245 if param.endswith("fasta_path"): | |
| 246 estimator.set_params(**{param: fasta_path}) | |
| 247 break | |
| 248 else: | |
| 249 raise ValueError( | |
| 250 "The selected estimator doesn't support " | |
| 251 "fasta file input! Please consider using " | |
| 252 "KerasGBatchClassifier with " | |
| 253 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
| 254 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
| 255 "in pipeline!" | |
| 256 ) | |
| 257 | |
| 258 elif input_type == "refseq_and_interval": | |
| 259 path_params = { | |
| 260 "data_batch_generator__ref_genome_path": ref_seq, | |
| 261 "data_batch_generator__intervals_path": intervals, | |
| 262 "data_batch_generator__target_path": targets, | |
| 263 } | |
| 264 estimator.set_params(**path_params) | |
| 265 n_intervals = sum(1 for line in open(intervals)) | |
| 266 X = np.arange(n_intervals)[:, np.newaxis] | |
| 267 | |
| 268 # Get target y | |
| 269 header = "infer" if params["input_options"]["header2"] else None | |
| 270 column_option = params["input_options"]["column_selector_options_2"][ | |
| 271 "selected_column_selector_option2" | |
| 272 ] | |
| 273 if column_option in [ | |
| 274 "by_index_number", | |
| 275 "all_but_by_index_number", | |
| 276 "by_header_name", | |
| 277 "all_but_by_header_name", | |
| 278 ]: | |
| 279 c = params["input_options"]["column_selector_options_2"]["col2"] | |
| 280 else: | |
| 281 c = None | |
| 282 | |
| 283 df_key = infile2 + repr(header) | |
| 284 if df_key in loaded_df: | |
| 285 infile2 = loaded_df[df_key] | |
| 286 else: | |
| 287 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
| 288 loaded_df[df_key] = infile2 | |
| 289 | |
| 290 y = read_columns( | |
| 291 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True | |
| 292 ) | |
| 293 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 294 y = y.ravel() | |
| 295 if input_type == "refseq_and_interval": | |
| 296 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | |
| 297 y = None | |
| 298 # end y | |
| 299 | |
| 300 return estimator, X, y | |
| 301 | |
| 302 | |
| 303 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score="raise", outfile=None): | |
| 304 """Do outer cross-validation for nested CV | |
| 305 | |
| 306 Parameters | |
| 307 ---------- | |
| 308 searcher : object | |
| 309 SearchCV object | |
| 310 X : numpy array | |
| 311 Containing features | |
| 312 y : numpy array | |
| 313 Target values or labels | |
| 314 outer_cv : int or CV splitter | |
| 315 Control the cv splitting | |
| 316 scoring : object | |
| 317 Scorer | |
| 318 error_score: str, float or numpy float | |
| 319 Whether to raise fit error or return an value | |
| 320 outfile : str | |
| 321 File path to store the restuls | |
| 322 """ | |
| 323 if error_score == "raise": | |
| 324 rval = cross_validate( | |
| 325 searcher, | |
| 326 X, | |
| 327 y, | |
| 328 scoring=scoring, | |
| 329 cv=outer_cv, | |
| 330 n_jobs=N_JOBS, | |
| 331 verbose=0, | |
| 332 error_score=error_score, | |
| 333 ) | |
| 334 else: | |
| 335 warnings.simplefilter("always", FitFailedWarning) | |
| 336 with warnings.catch_warnings(record=True) as w: | |
| 337 try: | |
| 338 rval = cross_validate( | |
| 339 searcher, | |
| 340 X, | |
| 341 y, | |
| 342 scoring=scoring, | |
| 343 cv=outer_cv, | |
| 344 n_jobs=N_JOBS, | |
| 345 verbose=0, | |
| 346 error_score=error_score, | |
| 347 ) | |
| 348 except ValueError: | |
| 349 pass | |
| 350 for warning in w: | |
| 351 print(repr(warning.message)) | |
| 352 | |
| 353 keys = list(rval.keys()) | |
| 354 for k in keys: | |
| 355 if k.startswith("test"): | |
| 356 rval["mean_" + k] = np.mean(rval[k]) | |
| 357 rval["std_" + k] = np.std(rval[k]) | |
| 358 if k.endswith("time"): | |
| 359 rval.pop(k) | |
| 360 rval = pd.DataFrame(rval) | |
| 361 rval = rval[sorted(rval.columns)] | |
| 362 rval.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | |
| 363 | |
| 364 | |
| 365 def _do_train_test_split_val( | |
| 366 searcher, | |
| 367 X, | |
| 368 y, | |
| 369 params, | |
| 370 error_score="raise", | |
| 371 primary_scoring=None, | |
| 372 groups=None, | |
| 373 outfile=None, | |
| 374 ): | |
| 375 """do train test split, searchCV validates on the train and then use | |
| 376 the best_estimator_ to evaluate on the test | |
| 377 | |
| 378 Returns | |
| 379 -------- | |
| 380 Fitted SearchCV object | |
| 381 """ | |
| 382 train_test_split = try_get_attr("galaxy_ml.model_validations", "train_test_split") | |
| 383 split_options = params["outer_split"] | |
| 384 | |
| 385 # splits | |
| 386 if split_options["shuffle"] == "stratified": | |
| 387 split_options["labels"] = y | |
| 388 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 389 elif split_options["shuffle"] == "group": | |
| 390 if groups is None: | |
| 391 raise ValueError( | |
| 392 "No group based CV option was choosen for " "group shuffle!" | |
| 393 ) | |
| 394 split_options["labels"] = groups | |
| 395 if y is None: | |
| 396 X, X_test, groups, _ = train_test_split(X, groups, **split_options) | |
| 397 else: | |
| 398 X, X_test, y, y_test, groups, _ = train_test_split( | |
| 399 X, y, groups, **split_options | |
| 400 ) | |
| 401 else: | |
| 402 if split_options["shuffle"] == "None": | |
| 403 split_options["shuffle"] = None | |
| 404 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 405 | |
| 406 if error_score == "raise": | |
| 407 searcher.fit(X, y, groups=groups) | |
| 408 else: | |
| 409 warnings.simplefilter("always", FitFailedWarning) | |
| 410 with warnings.catch_warnings(record=True) as w: | |
| 411 try: | |
| 412 searcher.fit(X, y, groups=groups) | |
| 413 except ValueError: | |
| 414 pass | |
| 415 for warning in w: | |
| 416 print(repr(warning.message)) | |
| 417 | |
| 418 scorer_ = searcher.scorer_ | |
| 419 if isinstance(scorer_, collections.Mapping): | |
| 420 is_multimetric = True | |
| 421 else: | |
| 422 is_multimetric = False | |
| 423 | |
| 424 best_estimator_ = getattr(searcher, "best_estimator_") | |
| 425 | |
| 426 # TODO Solve deep learning models in pipeline | |
| 427 if best_estimator_.__class__.__name__ == "KerasGBatchClassifier": | |
| 428 test_score = best_estimator_.evaluate( | |
| 429 X_test, scorer=scorer_, is_multimetric=is_multimetric | |
| 430 ) | |
| 431 else: | |
| 432 test_score = _score( | |
| 433 best_estimator_, X_test, y_test, scorer_, is_multimetric=is_multimetric | |
| 434 ) | |
| 435 | |
| 436 if not is_multimetric: | |
| 437 test_score = {primary_scoring: test_score} | |
| 438 for key, value in test_score.items(): | |
| 439 test_score[key] = [value] | |
| 440 result_df = pd.DataFrame(test_score) | |
| 441 result_df.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | |
| 442 | |
| 443 return searcher | |
| 444 | |
| 445 | |
| 446 def main( | |
| 447 inputs, | |
| 448 infile_estimator, | |
| 449 infile1, | |
| 450 infile2, | |
| 451 outfile_result, | |
| 452 outfile_object=None, | |
| 453 outfile_weights=None, | |
| 454 groups=None, | |
| 455 ref_seq=None, | |
| 456 intervals=None, | |
| 457 targets=None, | |
| 458 fasta_path=None, | |
| 459 ): | |
| 460 """ | |
| 461 Parameter | |
| 462 --------- | |
| 463 inputs : str | |
| 464 File path to galaxy tool parameter | |
| 465 | |
| 466 infile_estimator : str | |
| 467 File path to estimator | |
| 468 | |
| 469 infile1 : str | |
| 470 File path to dataset containing features | |
| 471 | |
| 472 infile2 : str | |
| 473 File path to dataset containing target values | |
| 474 | |
| 475 outfile_result : str | |
| 476 File path to save the results, either cv_results or test result | |
| 477 | |
| 478 outfile_object : str, optional | |
| 479 File path to save searchCV object | |
| 480 | |
| 481 outfile_weights : str, optional | |
| 482 File path to save model weights | |
| 483 | |
| 484 groups : str | |
| 485 File path to dataset containing groups labels | |
| 486 | |
| 487 ref_seq : str | |
| 488 File path to dataset containing genome sequence file | |
| 489 | |
| 490 intervals : str | |
| 491 File path to dataset containing interval file | |
| 492 | |
| 493 targets : str | |
| 494 File path to dataset compressed target bed file | |
| 495 | |
| 496 fasta_path : str | |
| 497 File path to dataset containing fasta file | |
| 498 """ | |
| 499 warnings.simplefilter("ignore") | |
| 500 | |
| 501 # store read dataframe object | |
| 502 loaded_df = {} | |
| 503 | |
| 504 with open(inputs, "r") as param_handler: | |
| 505 params = json.load(param_handler) | |
| 506 | |
| 507 # Override the refit parameter | |
| 508 params["search_schemes"]["options"]["refit"] = ( | |
| 509 True if params["save"] != "nope" else False | |
| 510 ) | |
| 511 | |
| 512 with open(infile_estimator, "rb") as estimator_handler: | |
| 513 estimator = load_model(estimator_handler) | |
| 514 | |
| 515 optimizer = params["search_schemes"]["selected_search_scheme"] | |
| 516 optimizer = getattr(model_selection, optimizer) | |
| 517 | |
| 518 # handle gridsearchcv options | |
| 519 options = params["search_schemes"]["options"] | |
| 520 | |
| 521 if groups: | |
| 522 header = ( | |
| 523 "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None | |
| 524 ) | |
| 525 column_option = options["cv_selector"]["groups_selector"][ | |
| 526 "column_selector_options_g" | |
| 527 ]["selected_column_selector_option_g"] | |
| 528 if column_option in [ | |
| 529 "by_index_number", | |
| 530 "all_but_by_index_number", | |
| 531 "by_header_name", | |
| 532 "all_but_by_header_name", | |
| 533 ]: | |
| 534 c = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ | |
| 535 "col_g" | |
| 536 ] | |
| 537 else: | |
| 538 c = None | |
| 539 | |
| 540 df_key = groups + repr(header) | |
| 541 | |
| 542 groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) | |
| 543 loaded_df[df_key] = groups | |
| 544 | |
| 545 groups = read_columns( | |
| 546 groups, | |
| 547 c=c, | |
| 548 c_option=column_option, | |
| 549 sep="\t", | |
| 550 header=header, | |
| 551 parse_dates=True, | |
| 552 ) | |
| 553 groups = groups.ravel() | |
| 554 options["cv_selector"]["groups_selector"] = groups | |
| 555 | |
| 556 splitter, groups = get_cv(options.pop("cv_selector")) | |
| 557 options["cv"] = splitter | |
| 558 primary_scoring = options["scoring"]["primary_scoring"] | |
| 559 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
| 560 # Check if secondary_scoring is specified | |
| 561 secondary_scoring = options["scoring"].get("secondary_scoring", None) | |
| 562 if secondary_scoring is not None: | |
| 563 # If secondary_scoring is specified, convert the list into comman separated string | |
| 564 options["scoring"]["secondary_scoring"] = ",".join( | |
| 565 options["scoring"]["secondary_scoring"] | |
| 566 ) | |
| 567 options["scoring"] = get_scoring(options["scoring"]) | |
| 568 if options["error_score"]: | |
| 569 options["error_score"] = "raise" | |
| 570 else: | |
| 571 options["error_score"] = np.nan | |
| 572 if options["refit"] and isinstance(options["scoring"], dict): | |
| 573 options["refit"] = primary_scoring | |
| 574 if "pre_dispatch" in options and options["pre_dispatch"] == "": | |
| 575 options["pre_dispatch"] = None | |
| 576 | |
| 577 params_builder = params["search_schemes"]["search_params_builder"] | |
| 578 param_grid = _eval_search_params(params_builder) | |
| 579 | |
| 580 estimator = clean_params(estimator) | |
| 581 | |
| 582 # save the SearchCV object without fit | |
| 583 if params["save"] == "save_no_fit": | |
| 584 searcher = optimizer(estimator, param_grid, **options) | |
| 585 print(searcher) | |
| 586 with open(outfile_object, "wb") as output_handler: | |
| 587 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) | |
| 588 return 0 | |
| 589 | |
| 590 # read inputs and loads new attributes, like paths | |
| 591 estimator, X, y = _handle_X_y( | |
| 592 estimator, | |
| 593 params, | |
| 594 infile1, | |
| 595 infile2, | |
| 596 loaded_df=loaded_df, | |
| 597 ref_seq=ref_seq, | |
| 598 intervals=intervals, | |
| 599 targets=targets, | |
| 600 fasta_path=fasta_path, | |
| 601 ) | |
| 602 | |
| 603 # cache iraps_core fits could increase search speed significantly | |
| 604 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 605 main_est = get_main_estimator(estimator) | |
| 606 if main_est.__class__.__name__ == "IRAPSClassifier": | |
| 607 main_est.set_params(memory=memory) | |
| 608 | |
| 609 searcher = optimizer(estimator, param_grid, **options) | |
| 610 | |
| 611 split_mode = params["outer_split"].pop("split_mode") | |
| 612 | |
| 613 if split_mode == "nested_cv": | |
| 614 # make sure refit is choosen | |
| 615 # this could be True for sklearn models, but not the case for | |
| 616 # deep learning models | |
| 617 if not options["refit"] and not all( | |
| 618 hasattr(estimator, attr) for attr in ("config", "model_type") | |
| 619 ): | |
| 620 warnings.warn("Refit is change to `True` for nested validation!") | |
| 621 setattr(searcher, "refit", True) | |
| 622 | |
| 623 outer_cv, _ = get_cv(params["outer_split"]["cv_selector"]) | |
| 624 # nested CV, outer cv using cross_validate | |
| 625 if options["error_score"] == "raise": | |
| 626 rval = cross_validate( | |
| 627 searcher, | |
| 628 X, | |
| 629 y, | |
| 630 scoring=options["scoring"], | |
| 631 cv=outer_cv, | |
| 632 n_jobs=N_JOBS, | |
| 633 verbose=options["verbose"], | |
| 634 return_estimator=(params["save"] == "save_estimator"), | |
| 635 error_score=options["error_score"], | |
| 636 return_train_score=True, | |
| 637 ) | |
| 638 else: | |
| 639 warnings.simplefilter("always", FitFailedWarning) | |
| 640 with warnings.catch_warnings(record=True) as w: | |
| 641 try: | |
| 642 rval = cross_validate( | |
| 643 searcher, | |
| 644 X, | |
| 645 y, | |
| 646 scoring=options["scoring"], | |
| 647 cv=outer_cv, | |
| 648 n_jobs=N_JOBS, | |
| 649 verbose=options["verbose"], | |
| 650 return_estimator=(params["save"] == "save_estimator"), | |
| 651 error_score=options["error_score"], | |
| 652 return_train_score=True, | |
| 653 ) | |
| 654 except ValueError: | |
| 655 pass | |
| 656 for warning in w: | |
| 657 print(repr(warning.message)) | |
| 658 | |
| 659 fitted_searchers = rval.pop("estimator", []) | |
| 660 if fitted_searchers: | |
| 661 import os | |
| 662 | |
| 663 pwd = os.getcwd() | |
| 664 save_dir = os.path.join(pwd, "cv_results_in_folds") | |
| 665 try: | |
| 666 os.mkdir(save_dir) | |
| 667 for idx, obj in enumerate(fitted_searchers): | |
| 668 target_name = "cv_results_" + "_" + "split%d" % idx | |
| 669 target_path = os.path.join(pwd, save_dir, target_name) | |
| 670 cv_results_ = getattr(obj, "cv_results_", None) | |
| 671 if not cv_results_: | |
| 672 print("%s is not available" % target_name) | |
| 673 continue | |
| 674 cv_results_ = pd.DataFrame(cv_results_) | |
| 675 cv_results_ = cv_results_[sorted(cv_results_.columns)] | |
| 676 cv_results_.to_csv(target_path, sep="\t", header=True, index=False) | |
| 677 except Exception as e: | |
| 678 print(e) | |
| 679 finally: | |
| 680 del os | |
| 681 | |
| 682 keys = list(rval.keys()) | |
| 683 for k in keys: | |
| 684 if k.startswith("test"): | |
| 685 rval["mean_" + k] = np.mean(rval[k]) | |
| 686 rval["std_" + k] = np.std(rval[k]) | |
| 687 if k.endswith("time"): | |
| 688 rval.pop(k) | |
| 689 rval = pd.DataFrame(rval) | |
| 690 rval = rval[sorted(rval.columns)] | |
| 691 rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
| 692 # deprecate train test split mode | |
| 693 """searcher = _do_train_test_split_val( | |
| 694 searcher, X, y, params, | |
| 695 primary_scoring=primary_scoring, | |
| 696 error_score=options['error_score'], | |
| 697 groups=groups, | |
| 698 outfile=outfile_result)""" | |
| 699 return 0 | |
| 700 | |
| 701 # no outer split | |
| 702 else: | |
| 703 searcher.set_params(n_jobs=N_JOBS) | |
| 704 if options["error_score"] == "raise": | |
| 705 searcher.fit(X, y, groups=groups) | |
| 706 else: | |
| 707 warnings.simplefilter("always", FitFailedWarning) | |
| 708 with warnings.catch_warnings(record=True) as w: | |
| 709 try: | |
| 710 searcher.fit(X, y, groups=groups) | |
| 711 except ValueError: | |
| 712 pass | |
| 713 for warning in w: | |
| 714 print(repr(warning.message)) | |
| 715 | |
| 716 cv_results = pd.DataFrame(searcher.cv_results_) | |
| 717 cv_results = cv_results[sorted(cv_results.columns)] | |
| 718 cv_results.to_csv( | |
| 719 path_or_buf=outfile_result, sep="\t", header=True, index=False | |
| 720 ) | |
| 721 | |
| 722 memory.clear(warn=False) | |
| 723 | |
| 724 # output best estimator, and weights if applicable | |
| 725 if outfile_object: | |
| 726 best_estimator_ = getattr(searcher, "best_estimator_", None) | |
| 727 if not best_estimator_: | |
| 728 warnings.warn( | |
| 729 "GridSearchCV object has no attribute " | |
| 730 "'best_estimator_', because either it's " | |
| 731 "nested gridsearch or `refit` is False!" | |
| 732 ) | |
| 733 return | |
| 734 | |
| 735 # clean prams | |
| 736 best_estimator_ = clean_params(best_estimator_) | |
| 737 | |
| 738 main_est = get_main_estimator(best_estimator_) | |
| 739 | |
| 740 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
| 741 if outfile_weights: | |
| 742 main_est.save_weights(outfile_weights) | |
| 743 del main_est.model_ | |
| 744 del main_est.fit_params | |
| 745 del main_est.model_class_ | |
| 746 del main_est.validation_data | |
| 747 if getattr(main_est, "data_generator_", None): | |
| 748 del main_est.data_generator_ | |
| 749 | |
| 750 with open(outfile_object, "wb") as output_handler: | |
| 751 print("Best estimator is saved: %s " % repr(best_estimator_)) | |
| 752 pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) | |
| 753 | |
| 754 | |
| 755 if __name__ == "__main__": | |
| 756 aparser = argparse.ArgumentParser() | |
| 757 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 758 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 759 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 760 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 761 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
| 762 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 763 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
| 764 aparser.add_argument("-g", "--groups", dest="groups") | |
| 765 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
| 766 aparser.add_argument("-b", "--intervals", dest="intervals") | |
| 767 aparser.add_argument("-t", "--targets", dest="targets") | |
| 768 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
| 769 args = aparser.parse_args() | |
| 770 | |
| 771 main( | |
| 772 args.inputs, | |
| 773 args.infile_estimator, | |
| 774 args.infile1, | |
| 775 args.infile2, | |
| 776 args.outfile_result, | |
| 777 outfile_object=args.outfile_object, | |
| 778 outfile_weights=args.outfile_weights, | |
| 779 groups=args.groups, | |
| 780 ref_seq=args.ref_seq, | |
| 781 intervals=args.intervals, | |
| 782 targets=args.targets, | |
| 783 fasta_path=args.fasta_path, | |
| 784 ) |
