Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
comparison association_rules.xml @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:af2624d5ab32 |
---|---|
1 <tool id="sklearn_mlxtend_association_rules" name="Association rules" version="@VERSION@"> | |
2 <description>Extract frequent itemsets and generate association rules</description> | |
3 <macros> | |
4 <import>main_macros.xml</import> | |
5 </macros> | |
6 <expand macro="python_requirements"/> | |
7 <expand macro="macro_stdio"/> | |
8 <version_command>echo "@VERSION@"</version_command> | |
9 <command detect_errors="exit_code"><![CDATA[ | |
10 python '$__tool_directory__/association_rules.py' | |
11 --inputs '$inputs' | |
12 --infile '$infile' | |
13 --outfile '$outfile' | |
14 #if $support | |
15 --support '$support' | |
16 #end if | |
17 #if $confidence | |
18 --confidence '$confidence' | |
19 #end if | |
20 #if $lift | |
21 --lift '$lift' | |
22 #end if | |
23 #if $conviction | |
24 --conviction '$conviction' | |
25 #end if | |
26 #if $length | |
27 --length '$length' | |
28 #end if | |
29 ]]> | |
30 </command> | |
31 <configfiles> | |
32 <inputs name="inputs" /> | |
33 </configfiles> | |
34 <inputs> | |
35 <param name="infile" type="data" format="tabular" label="Input file"/> | |
36 <param name="header0" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Does the dataset contain header?"/> | |
37 <param name="support" type="float" optional="true" label="Minimum support"/> | |
38 <param name="confidence" type="float" optional="true" label="Minimum confidence"/> | |
39 <param name="lift" type="float" optional="true" label="Minimum lift"/> | |
40 <param name="conviction" type="float" optional="true" label="Minimum conviction"/> | |
41 <param name="length" type="integer" optional="true" label="Maximum length"/> | |
42 </inputs> | |
43 <outputs> | |
44 <data name="outfile" format="tabular"/> | |
45 </outputs> | |
46 <tests> | |
47 <test> | |
48 <param name="infile" value="mba_input_str_w.tabular" ftype="tabular"/> | |
49 <param name="header0" value="true"/> | |
50 <param name="support" value="0.5"/> | |
51 <param name="confidence" value="0.5"/> | |
52 <param name="lift" value="1.1"/> | |
53 <param name="conviction" value="1.1"/> | |
54 <param name="length" value="5"/> | |
55 <output name="outfile" file="mba_out_str.tabular" ftype="tabular"/> | |
56 </test> | |
57 <test> | |
58 <param name="infile" value="mba_input_int_w.tabular" ftype="tabular"/> | |
59 <param name="header0" value="true"/> | |
60 <param name="support" value="0.5"/> | |
61 <param name="confidence" value="0.5"/> | |
62 <param name="lift" value="1.1"/> | |
63 <param name="conviction" value="1.1"/> | |
64 <param name="length" value="5"/> | |
65 <output name="outfile" file="mba_output_int.tabular" ftype="tabular"/> | |
66 </test> | |
67 <test> | |
68 <param name="infile" value="mba_input_str_wo.tabular" ftype="tabular"/> | |
69 <param name="header0" value="false"/> | |
70 <param name="support" value="0.5"/> | |
71 <param name="confidence" value="0.5"/> | |
72 <param name="lift" value="1.1"/> | |
73 <param name="conviction" value="1.1"/> | |
74 <param name="length" value="5"/> | |
75 <output name="outfile" file="mba_output_str.tabular" ftype="tabular"/> | |
76 </test> | |
77 <test> | |
78 <param name="infile" value="mba_input_int_wo.tabular" ftype="tabular"/> | |
79 <param name="header0" value="false"/> | |
80 <param name="support" value="0.5"/> | |
81 <param name="confidence" value="0.5"/> | |
82 <param name="lift" value="1.1"/> | |
83 <param name="conviction" value="1.1"/> | |
84 <param name="length" value="5"/> | |
85 <output name="outfile" file="mba_output_int.tabular" ftype="tabular"/> | |
86 </test> | |
87 </tests> | |
88 <help><![CDATA[ | |
89 **What it does** | |
90 | |
91 Extract frequent itemsets and generate association rules | |
92 | |
93 from mlxtend.frequent_patterns import fpgrowth | |
94 | |
95 Extracts frequent itemsets for association rule mining. An itemset is considered as "frequent" if it | |
96 meets a user-specified support threshold. For instance, if the support threshold is set to 0.5 (50%), | |
97 a frequent itemset is defined as a set of items that occur together in at least 50% of all transactions | |
98 in the database. We can only get itemsets that have a maximum number of items via length input parameter. | |
99 | |
100 from mlxtend.frequent_patterns import association_rules | |
101 | |
102 Generates association rules from frequent itemsets. Rule generation is a common task in the mining of | |
103 frequent patterns. An association rule is an implication expression of the form X->Y, where X and Y | |
104 are disjoint itemsets. A more concrete example based on consumer behaviour would be {Diapers}->{Beer} | |
105 suggesting that people who buy diapers are also likely to buy beer. To evaluate the "interest" of | |
106 such an association rule, different metrics have been developed, e.g., confidence, lift, and conviction. | |
107 | |
108 Arguments | |
109 | |
110 infile: Each line in infile contains (tab-separated) items in a tranasaction. Different lines/transactions | |
111 can have differnt/varying number of items. | |
112 | |
113 Returns | |
114 | |
115 outfile: A tab separated file, that has an association rule on each line, with various metrics listed. | |
116 | |
117 ]]></help> | |
118 <expand macro="sklearn_citation"/> | |
119 </tool> |