Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
comparison keras_deep_learning.py @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children | 9349ed2749c6 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:af2624d5ab32 |
---|---|
1 import argparse | |
2 import json | |
3 import pickle | |
4 import warnings | |
5 from ast import literal_eval | |
6 | |
7 import keras | |
8 import pandas as pd | |
9 import six | |
10 from galaxy_ml.utils import get_search_params, SafeEval, try_get_attr | |
11 from keras.models import Model, Sequential | |
12 | |
13 safe_eval = SafeEval() | |
14 | |
15 | |
16 def _handle_shape(literal): | |
17 """ | |
18 Eval integer or list/tuple of integers from string | |
19 | |
20 Parameters: | |
21 ----------- | |
22 literal : str. | |
23 """ | |
24 literal = literal.strip() | |
25 if not literal: | |
26 return None | |
27 try: | |
28 return literal_eval(literal) | |
29 except NameError as e: | |
30 print(e) | |
31 return literal | |
32 | |
33 | |
34 def _handle_regularizer(literal): | |
35 """ | |
36 Construct regularizer from string literal | |
37 | |
38 Parameters | |
39 ---------- | |
40 literal : str. E.g. '(0.1, 0)' | |
41 """ | |
42 literal = literal.strip() | |
43 if not literal: | |
44 return None | |
45 | |
46 l1, l2 = literal_eval(literal) | |
47 | |
48 if not l1 and not l2: | |
49 return None | |
50 | |
51 if l1 is None: | |
52 l1 = 0.0 | |
53 if l2 is None: | |
54 l2 = 0.0 | |
55 | |
56 return keras.regularizers.l1_l2(l1=l1, l2=l2) | |
57 | |
58 | |
59 def _handle_constraint(config): | |
60 """ | |
61 Construct constraint from galaxy tool parameters. | |
62 Suppose correct dictionary format | |
63 | |
64 Parameters | |
65 ---------- | |
66 config : dict. E.g. | |
67 "bias_constraint": | |
68 {"constraint_options": | |
69 {"max_value":1.0, | |
70 "min_value":0.0, | |
71 "axis":"[0, 1, 2]" | |
72 }, | |
73 "constraint_type": | |
74 "MinMaxNorm" | |
75 } | |
76 """ | |
77 constraint_type = config["constraint_type"] | |
78 if constraint_type in ("None", ""): | |
79 return None | |
80 | |
81 klass = getattr(keras.constraints, constraint_type) | |
82 options = config.get("constraint_options", {}) | |
83 if "axis" in options: | |
84 options["axis"] = literal_eval(options["axis"]) | |
85 | |
86 return klass(**options) | |
87 | |
88 | |
89 def _handle_lambda(literal): | |
90 return None | |
91 | |
92 | |
93 def _handle_layer_parameters(params): | |
94 """ | |
95 Access to handle all kinds of parameters | |
96 """ | |
97 for key, value in six.iteritems(params): | |
98 if value in ("None", ""): | |
99 params[key] = None | |
100 continue | |
101 | |
102 if type(value) in [int, float, bool] or ( | |
103 type(value) is str and value.isalpha() | |
104 ): | |
105 continue | |
106 | |
107 if ( | |
108 key | |
109 in [ | |
110 "input_shape", | |
111 "noise_shape", | |
112 "shape", | |
113 "batch_shape", | |
114 "target_shape", | |
115 "dims", | |
116 "kernel_size", | |
117 "strides", | |
118 "dilation_rate", | |
119 "output_padding", | |
120 "cropping", | |
121 "size", | |
122 "padding", | |
123 "pool_size", | |
124 "axis", | |
125 "shared_axes", | |
126 ] | |
127 and isinstance(value, str) | |
128 ): | |
129 params[key] = _handle_shape(value) | |
130 | |
131 elif key.endswith("_regularizer") and isinstance(value, dict): | |
132 params[key] = _handle_regularizer(value) | |
133 | |
134 elif key.endswith("_constraint") and isinstance(value, dict): | |
135 params[key] = _handle_constraint(value) | |
136 | |
137 elif key == "function": # No support for lambda/function eval | |
138 params.pop(key) | |
139 | |
140 return params | |
141 | |
142 | |
143 def get_sequential_model(config): | |
144 """ | |
145 Construct keras Sequential model from Galaxy tool parameters | |
146 | |
147 Parameters: | |
148 ----------- | |
149 config : dictionary, galaxy tool parameters loaded by JSON | |
150 """ | |
151 model = Sequential() | |
152 input_shape = _handle_shape(config["input_shape"]) | |
153 layers = config["layers"] | |
154 for layer in layers: | |
155 options = layer["layer_selection"] | |
156 layer_type = options.pop("layer_type") | |
157 klass = getattr(keras.layers, layer_type) | |
158 kwargs = options.pop("kwargs", "") | |
159 | |
160 # parameters needs special care | |
161 options = _handle_layer_parameters(options) | |
162 | |
163 if kwargs: | |
164 kwargs = safe_eval("dict(" + kwargs + ")") | |
165 options.update(kwargs) | |
166 | |
167 # add input_shape to the first layer only | |
168 if not getattr(model, "_layers") and input_shape is not None: | |
169 options["input_shape"] = input_shape | |
170 | |
171 model.add(klass(**options)) | |
172 | |
173 return model | |
174 | |
175 | |
176 def get_functional_model(config): | |
177 """ | |
178 Construct keras functional model from Galaxy tool parameters | |
179 | |
180 Parameters | |
181 ----------- | |
182 config : dictionary, galaxy tool parameters loaded by JSON | |
183 """ | |
184 layers = config["layers"] | |
185 all_layers = [] | |
186 for layer in layers: | |
187 options = layer["layer_selection"] | |
188 layer_type = options.pop("layer_type") | |
189 klass = getattr(keras.layers, layer_type) | |
190 inbound_nodes = options.pop("inbound_nodes", None) | |
191 kwargs = options.pop("kwargs", "") | |
192 | |
193 # parameters needs special care | |
194 options = _handle_layer_parameters(options) | |
195 | |
196 if kwargs: | |
197 kwargs = safe_eval("dict(" + kwargs + ")") | |
198 options.update(kwargs) | |
199 | |
200 # merge layers | |
201 if "merging_layers" in options: | |
202 idxs = literal_eval(options.pop("merging_layers")) | |
203 merging_layers = [all_layers[i - 1] for i in idxs] | |
204 new_layer = klass(**options)(merging_layers) | |
205 # non-input layers | |
206 elif inbound_nodes is not None: | |
207 new_layer = klass(**options)(all_layers[inbound_nodes - 1]) | |
208 # input layers | |
209 else: | |
210 new_layer = klass(**options) | |
211 | |
212 all_layers.append(new_layer) | |
213 | |
214 input_indexes = _handle_shape(config["input_layers"]) | |
215 input_layers = [all_layers[i - 1] for i in input_indexes] | |
216 | |
217 output_indexes = _handle_shape(config["output_layers"]) | |
218 output_layers = [all_layers[i - 1] for i in output_indexes] | |
219 | |
220 return Model(inputs=input_layers, outputs=output_layers) | |
221 | |
222 | |
223 def get_batch_generator(config): | |
224 """ | |
225 Construct keras online data generator from Galaxy tool parameters | |
226 | |
227 Parameters | |
228 ----------- | |
229 config : dictionary, galaxy tool parameters loaded by JSON | |
230 """ | |
231 generator_type = config.pop("generator_type") | |
232 if generator_type == "none": | |
233 return None | |
234 | |
235 klass = try_get_attr("galaxy_ml.preprocessors", generator_type) | |
236 | |
237 if generator_type == "GenomicIntervalBatchGenerator": | |
238 config["ref_genome_path"] = "to_be_determined" | |
239 config["intervals_path"] = "to_be_determined" | |
240 config["target_path"] = "to_be_determined" | |
241 config["features"] = "to_be_determined" | |
242 else: | |
243 config["fasta_path"] = "to_be_determined" | |
244 | |
245 return klass(**config) | |
246 | |
247 | |
248 def config_keras_model(inputs, outfile): | |
249 """ | |
250 config keras model layers and output JSON | |
251 | |
252 Parameters | |
253 ---------- | |
254 inputs : dict | |
255 loaded galaxy tool parameters from `keras_model_config` | |
256 tool. | |
257 outfile : str | |
258 Path to galaxy dataset containing keras model JSON. | |
259 """ | |
260 model_type = inputs["model_selection"]["model_type"] | |
261 layers_config = inputs["model_selection"] | |
262 | |
263 if model_type == "sequential": | |
264 model = get_sequential_model(layers_config) | |
265 else: | |
266 model = get_functional_model(layers_config) | |
267 | |
268 json_string = model.to_json() | |
269 | |
270 with open(outfile, "w") as f: | |
271 json.dump(json.loads(json_string), f, indent=2) | |
272 | |
273 | |
274 def build_keras_model( | |
275 inputs, | |
276 outfile, | |
277 model_json, | |
278 infile_weights=None, | |
279 batch_mode=False, | |
280 outfile_params=None, | |
281 ): | |
282 """ | |
283 for `keras_model_builder` tool | |
284 | |
285 Parameters | |
286 ---------- | |
287 inputs : dict | |
288 loaded galaxy tool parameters from `keras_model_builder` tool. | |
289 outfile : str | |
290 Path to galaxy dataset containing the keras_galaxy model output. | |
291 model_json : str | |
292 Path to dataset containing keras model JSON. | |
293 infile_weights : str or None | |
294 If string, path to dataset containing model weights. | |
295 batch_mode : bool, default=False | |
296 Whether to build online batch classifier. | |
297 outfile_params : str, default=None | |
298 File path to search parameters output. | |
299 """ | |
300 with open(model_json, "r") as f: | |
301 json_model = json.load(f) | |
302 | |
303 config = json_model["config"] | |
304 | |
305 options = {} | |
306 | |
307 if json_model["class_name"] == "Sequential": | |
308 options["model_type"] = "sequential" | |
309 klass = Sequential | |
310 elif json_model["class_name"] == "Model": | |
311 options["model_type"] = "functional" | |
312 klass = Model | |
313 else: | |
314 raise ValueError("Unknow Keras model class: %s" % json_model["class_name"]) | |
315 | |
316 # load prefitted model | |
317 if inputs["mode_selection"]["mode_type"] == "prefitted": | |
318 estimator = klass.from_config(config) | |
319 estimator.load_weights(infile_weights) | |
320 # build train model | |
321 else: | |
322 cls_name = inputs["mode_selection"]["learning_type"] | |
323 klass = try_get_attr("galaxy_ml.keras_galaxy_models", cls_name) | |
324 | |
325 options["loss"] = inputs["mode_selection"]["compile_params"]["loss"] | |
326 options["optimizer"] = ( | |
327 inputs["mode_selection"]["compile_params"]["optimizer_selection"][ | |
328 "optimizer_type" | |
329 ] | |
330 ).lower() | |
331 | |
332 options.update( | |
333 ( | |
334 inputs["mode_selection"]["compile_params"]["optimizer_selection"][ | |
335 "optimizer_options" | |
336 ] | |
337 ) | |
338 ) | |
339 | |
340 train_metrics = inputs["mode_selection"]["compile_params"]["metrics"] | |
341 if train_metrics[-1] == "none": | |
342 train_metrics = train_metrics[:-1] | |
343 options["metrics"] = train_metrics | |
344 | |
345 options.update(inputs["mode_selection"]["fit_params"]) | |
346 options["seed"] = inputs["mode_selection"]["random_seed"] | |
347 | |
348 if batch_mode: | |
349 generator = get_batch_generator( | |
350 inputs["mode_selection"]["generator_selection"] | |
351 ) | |
352 options["data_batch_generator"] = generator | |
353 options["prediction_steps"] = inputs["mode_selection"]["prediction_steps"] | |
354 options["class_positive_factor"] = inputs["mode_selection"][ | |
355 "class_positive_factor" | |
356 ] | |
357 estimator = klass(config, **options) | |
358 if outfile_params: | |
359 hyper_params = get_search_params(estimator) | |
360 # TODO: remove this after making `verbose` tunable | |
361 for h_param in hyper_params: | |
362 if h_param[1].endswith("verbose"): | |
363 h_param[0] = "@" | |
364 df = pd.DataFrame(hyper_params, columns=["", "Parameter", "Value"]) | |
365 df.to_csv(outfile_params, sep="\t", index=False) | |
366 | |
367 print(repr(estimator)) | |
368 # save model by pickle | |
369 with open(outfile, "wb") as f: | |
370 pickle.dump(estimator, f, pickle.HIGHEST_PROTOCOL) | |
371 | |
372 | |
373 if __name__ == "__main__": | |
374 warnings.simplefilter("ignore") | |
375 | |
376 aparser = argparse.ArgumentParser() | |
377 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
378 aparser.add_argument("-m", "--model_json", dest="model_json") | |
379 aparser.add_argument("-t", "--tool_id", dest="tool_id") | |
380 aparser.add_argument("-w", "--infile_weights", dest="infile_weights") | |
381 aparser.add_argument("-o", "--outfile", dest="outfile") | |
382 aparser.add_argument("-p", "--outfile_params", dest="outfile_params") | |
383 args = aparser.parse_args() | |
384 | |
385 input_json_path = args.inputs | |
386 with open(input_json_path, "r") as param_handler: | |
387 inputs = json.load(param_handler) | |
388 | |
389 tool_id = args.tool_id | |
390 outfile = args.outfile | |
391 outfile_params = args.outfile_params | |
392 model_json = args.model_json | |
393 infile_weights = args.infile_weights | |
394 | |
395 # for keras_model_config tool | |
396 if tool_id == "keras_model_config": | |
397 config_keras_model(inputs, outfile) | |
398 | |
399 # for keras_model_builder tool | |
400 else: | |
401 batch_mode = False | |
402 if tool_id == "keras_batch_models": | |
403 batch_mode = True | |
404 | |
405 build_keras_model( | |
406 inputs=inputs, | |
407 model_json=model_json, | |
408 infile_weights=infile_weights, | |
409 batch_mode=batch_mode, | |
410 outfile=outfile, | |
411 outfile_params=outfile_params, | |
412 ) |