Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
comparison keras_train_and_eval.py @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children | 9349ed2749c6 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:af2624d5ab32 |
---|---|
1 import argparse | |
2 import json | |
3 import os | |
4 import pickle | |
5 import warnings | |
6 from itertools import chain | |
7 | |
8 import joblib | |
9 import numpy as np | |
10 import pandas as pd | |
11 from galaxy_ml.externals.selene_sdk.utils import compute_score | |
12 from galaxy_ml.keras_galaxy_models import _predict_generator | |
13 from galaxy_ml.model_validations import train_test_split | |
14 from galaxy_ml.utils import (clean_params, get_main_estimator, | |
15 get_module, get_scoring, load_model, read_columns, | |
16 SafeEval, try_get_attr) | |
17 from scipy.io import mmread | |
18 from sklearn.metrics.scorer import _check_multimetric_scoring | |
19 from sklearn.model_selection import _search, _validation | |
20 from sklearn.model_selection._validation import _score | |
21 from sklearn.pipeline import Pipeline | |
22 from sklearn.utils import indexable, safe_indexing | |
23 | |
24 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
25 setattr(_search, "_fit_and_score", _fit_and_score) | |
26 setattr(_validation, "_fit_and_score", _fit_and_score) | |
27 | |
28 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
29 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
30 del os | |
31 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | |
32 ALLOWED_CALLBACKS = ( | |
33 "EarlyStopping", | |
34 "TerminateOnNaN", | |
35 "ReduceLROnPlateau", | |
36 "CSVLogger", | |
37 "None", | |
38 ) | |
39 | |
40 | |
41 def _eval_swap_params(params_builder): | |
42 swap_params = {} | |
43 | |
44 for p in params_builder["param_set"]: | |
45 swap_value = p["sp_value"].strip() | |
46 if swap_value == "": | |
47 continue | |
48 | |
49 param_name = p["sp_name"] | |
50 if param_name.lower().endswith(NON_SEARCHABLE): | |
51 warnings.warn( | |
52 "Warning: `%s` is not eligible for search and was " | |
53 "omitted!" % param_name | |
54 ) | |
55 continue | |
56 | |
57 if not swap_value.startswith(":"): | |
58 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
59 ev = safe_eval(swap_value) | |
60 else: | |
61 # Have `:` before search list, asks for estimator evaluatio | |
62 safe_eval_es = SafeEval(load_estimators=True) | |
63 swap_value = swap_value[1:].strip() | |
64 # TODO maybe add regular express check | |
65 ev = safe_eval_es(swap_value) | |
66 | |
67 swap_params[param_name] = ev | |
68 | |
69 return swap_params | |
70 | |
71 | |
72 def train_test_split_none(*arrays, **kwargs): | |
73 """extend train_test_split to take None arrays | |
74 and support split by group names. | |
75 """ | |
76 nones = [] | |
77 new_arrays = [] | |
78 for idx, arr in enumerate(arrays): | |
79 if arr is None: | |
80 nones.append(idx) | |
81 else: | |
82 new_arrays.append(arr) | |
83 | |
84 if kwargs["shuffle"] == "None": | |
85 kwargs["shuffle"] = None | |
86 | |
87 group_names = kwargs.pop("group_names", None) | |
88 | |
89 if group_names is not None and group_names.strip(): | |
90 group_names = [name.strip() for name in group_names.split(",")] | |
91 new_arrays = indexable(*new_arrays) | |
92 groups = kwargs["labels"] | |
93 n_samples = new_arrays[0].shape[0] | |
94 index_arr = np.arange(n_samples) | |
95 test = index_arr[np.isin(groups, group_names)] | |
96 train = index_arr[~np.isin(groups, group_names)] | |
97 rval = list( | |
98 chain.from_iterable( | |
99 (safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays | |
100 ) | |
101 ) | |
102 else: | |
103 rval = train_test_split(*new_arrays, **kwargs) | |
104 | |
105 for pos in nones: | |
106 rval[pos * 2: 2] = [None, None] | |
107 | |
108 return rval | |
109 | |
110 | |
111 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | |
112 """output scores based on input scorer | |
113 | |
114 Parameters | |
115 ---------- | |
116 y_true : array | |
117 True label or target values | |
118 pred_probas : array | |
119 Prediction values, probability for classification problem | |
120 scorer : dict | |
121 dict of `sklearn.metrics.scorer.SCORER` | |
122 is_multimetric : bool, default is True | |
123 """ | |
124 if y_true.ndim == 1 or y_true.shape[-1] == 1: | |
125 pred_probas = pred_probas.ravel() | |
126 pred_labels = (pred_probas > 0.5).astype("int32") | |
127 targets = y_true.ravel().astype("int32") | |
128 if not is_multimetric: | |
129 preds = ( | |
130 pred_labels | |
131 if scorer.__class__.__name__ == "_PredictScorer" | |
132 else pred_probas | |
133 ) | |
134 score = scorer._score_func(targets, preds, **scorer._kwargs) | |
135 | |
136 return score | |
137 else: | |
138 scores = {} | |
139 for name, one_scorer in scorer.items(): | |
140 preds = ( | |
141 pred_labels | |
142 if one_scorer.__class__.__name__ == "_PredictScorer" | |
143 else pred_probas | |
144 ) | |
145 score = one_scorer._score_func(targets, preds, **one_scorer._kwargs) | |
146 scores[name] = score | |
147 | |
148 # TODO: multi-class metrics | |
149 # multi-label | |
150 else: | |
151 pred_labels = (pred_probas > 0.5).astype("int32") | |
152 targets = y_true.astype("int32") | |
153 if not is_multimetric: | |
154 preds = ( | |
155 pred_labels | |
156 if scorer.__class__.__name__ == "_PredictScorer" | |
157 else pred_probas | |
158 ) | |
159 score, _ = compute_score(preds, targets, scorer._score_func) | |
160 return score | |
161 else: | |
162 scores = {} | |
163 for name, one_scorer in scorer.items(): | |
164 preds = ( | |
165 pred_labels | |
166 if one_scorer.__class__.__name__ == "_PredictScorer" | |
167 else pred_probas | |
168 ) | |
169 score, _ = compute_score(preds, targets, one_scorer._score_func) | |
170 scores[name] = score | |
171 | |
172 return scores | |
173 | |
174 | |
175 def main( | |
176 inputs, | |
177 infile_estimator, | |
178 infile1, | |
179 infile2, | |
180 outfile_result, | |
181 outfile_object=None, | |
182 outfile_weights=None, | |
183 outfile_y_true=None, | |
184 outfile_y_preds=None, | |
185 groups=None, | |
186 ref_seq=None, | |
187 intervals=None, | |
188 targets=None, | |
189 fasta_path=None, | |
190 ): | |
191 """ | |
192 Parameter | |
193 --------- | |
194 inputs : str | |
195 File path to galaxy tool parameter | |
196 | |
197 infile_estimator : str | |
198 File path to estimator | |
199 | |
200 infile1 : str | |
201 File path to dataset containing features | |
202 | |
203 infile2 : str | |
204 File path to dataset containing target values | |
205 | |
206 outfile_result : str | |
207 File path to save the results, either cv_results or test result | |
208 | |
209 outfile_object : str, optional | |
210 File path to save searchCV object | |
211 | |
212 outfile_weights : str, optional | |
213 File path to save deep learning model weights | |
214 | |
215 outfile_y_true : str, optional | |
216 File path to target values for prediction | |
217 | |
218 outfile_y_preds : str, optional | |
219 File path to save deep learning model weights | |
220 | |
221 groups : str | |
222 File path to dataset containing groups labels | |
223 | |
224 ref_seq : str | |
225 File path to dataset containing genome sequence file | |
226 | |
227 intervals : str | |
228 File path to dataset containing interval file | |
229 | |
230 targets : str | |
231 File path to dataset compressed target bed file | |
232 | |
233 fasta_path : str | |
234 File path to dataset containing fasta file | |
235 """ | |
236 warnings.simplefilter("ignore") | |
237 | |
238 with open(inputs, "r") as param_handler: | |
239 params = json.load(param_handler) | |
240 | |
241 # load estimator | |
242 with open(infile_estimator, "rb") as estimator_handler: | |
243 estimator = load_model(estimator_handler) | |
244 | |
245 estimator = clean_params(estimator) | |
246 | |
247 # swap hyperparameter | |
248 swapping = params["experiment_schemes"]["hyperparams_swapping"] | |
249 swap_params = _eval_swap_params(swapping) | |
250 estimator.set_params(**swap_params) | |
251 | |
252 estimator_params = estimator.get_params() | |
253 | |
254 # store read dataframe object | |
255 loaded_df = {} | |
256 | |
257 input_type = params["input_options"]["selected_input"] | |
258 # tabular input | |
259 if input_type == "tabular": | |
260 header = "infer" if params["input_options"]["header1"] else None | |
261 column_option = params["input_options"]["column_selector_options_1"][ | |
262 "selected_column_selector_option" | |
263 ] | |
264 if column_option in [ | |
265 "by_index_number", | |
266 "all_but_by_index_number", | |
267 "by_header_name", | |
268 "all_but_by_header_name", | |
269 ]: | |
270 c = params["input_options"]["column_selector_options_1"]["col1"] | |
271 else: | |
272 c = None | |
273 | |
274 df_key = infile1 + repr(header) | |
275 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
276 loaded_df[df_key] = df | |
277 | |
278 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
279 # sparse input | |
280 elif input_type == "sparse": | |
281 X = mmread(open(infile1, "r")) | |
282 | |
283 # fasta_file input | |
284 elif input_type == "seq_fasta": | |
285 pyfaidx = get_module("pyfaidx") | |
286 sequences = pyfaidx.Fasta(fasta_path) | |
287 n_seqs = len(sequences.keys()) | |
288 X = np.arange(n_seqs)[:, np.newaxis] | |
289 for param in estimator_params.keys(): | |
290 if param.endswith("fasta_path"): | |
291 estimator.set_params(**{param: fasta_path}) | |
292 break | |
293 else: | |
294 raise ValueError( | |
295 "The selected estimator doesn't support " | |
296 "fasta file input! Please consider using " | |
297 "KerasGBatchClassifier with " | |
298 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
299 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
300 "in pipeline!" | |
301 ) | |
302 | |
303 elif input_type == "refseq_and_interval": | |
304 path_params = { | |
305 "data_batch_generator__ref_genome_path": ref_seq, | |
306 "data_batch_generator__intervals_path": intervals, | |
307 "data_batch_generator__target_path": targets, | |
308 } | |
309 estimator.set_params(**path_params) | |
310 n_intervals = sum(1 for line in open(intervals)) | |
311 X = np.arange(n_intervals)[:, np.newaxis] | |
312 | |
313 # Get target y | |
314 header = "infer" if params["input_options"]["header2"] else None | |
315 column_option = params["input_options"]["column_selector_options_2"][ | |
316 "selected_column_selector_option2" | |
317 ] | |
318 if column_option in [ | |
319 "by_index_number", | |
320 "all_but_by_index_number", | |
321 "by_header_name", | |
322 "all_but_by_header_name", | |
323 ]: | |
324 c = params["input_options"]["column_selector_options_2"]["col2"] | |
325 else: | |
326 c = None | |
327 | |
328 df_key = infile2 + repr(header) | |
329 if df_key in loaded_df: | |
330 infile2 = loaded_df[df_key] | |
331 else: | |
332 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
333 loaded_df[df_key] = infile2 | |
334 | |
335 y = read_columns( | |
336 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True | |
337 ) | |
338 if len(y.shape) == 2 and y.shape[1] == 1: | |
339 y = y.ravel() | |
340 if input_type == "refseq_and_interval": | |
341 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | |
342 y = None | |
343 # end y | |
344 | |
345 # load groups | |
346 if groups: | |
347 groups_selector = ( | |
348 params["experiment_schemes"]["test_split"]["split_algos"] | |
349 ).pop("groups_selector") | |
350 | |
351 header = "infer" if groups_selector["header_g"] else None | |
352 column_option = groups_selector["column_selector_options_g"][ | |
353 "selected_column_selector_option_g" | |
354 ] | |
355 if column_option in [ | |
356 "by_index_number", | |
357 "all_but_by_index_number", | |
358 "by_header_name", | |
359 "all_but_by_header_name", | |
360 ]: | |
361 c = groups_selector["column_selector_options_g"]["col_g"] | |
362 else: | |
363 c = None | |
364 | |
365 df_key = groups + repr(header) | |
366 if df_key in loaded_df: | |
367 groups = loaded_df[df_key] | |
368 | |
369 groups = read_columns( | |
370 groups, | |
371 c=c, | |
372 c_option=column_option, | |
373 sep="\t", | |
374 header=header, | |
375 parse_dates=True, | |
376 ) | |
377 groups = groups.ravel() | |
378 | |
379 # del loaded_df | |
380 del loaded_df | |
381 | |
382 # cache iraps_core fits could increase search speed significantly | |
383 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
384 main_est = get_main_estimator(estimator) | |
385 if main_est.__class__.__name__ == "IRAPSClassifier": | |
386 main_est.set_params(memory=memory) | |
387 | |
388 # handle scorer, convert to scorer dict | |
389 scoring = params["experiment_schemes"]["metrics"]["scoring"] | |
390 if scoring is not None: | |
391 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
392 # Check if secondary_scoring is specified | |
393 secondary_scoring = scoring.get("secondary_scoring", None) | |
394 if secondary_scoring is not None: | |
395 # If secondary_scoring is specified, convert the list into comman separated string | |
396 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
397 | |
398 scorer = get_scoring(scoring) | |
399 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
400 | |
401 # handle test (first) split | |
402 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] | |
403 | |
404 if test_split_options["shuffle"] == "group": | |
405 test_split_options["labels"] = groups | |
406 if test_split_options["shuffle"] == "stratified": | |
407 if y is not None: | |
408 test_split_options["labels"] = y | |
409 else: | |
410 raise ValueError( | |
411 "Stratified shuffle split is not " "applicable on empty target values!" | |
412 ) | |
413 | |
414 ( | |
415 X_train, | |
416 X_test, | |
417 y_train, | |
418 y_test, | |
419 groups_train, | |
420 _groups_test, | |
421 ) = train_test_split_none(X, y, groups, **test_split_options) | |
422 | |
423 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
424 | |
425 # handle validation (second) split | |
426 if exp_scheme == "train_val_test": | |
427 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] | |
428 | |
429 if val_split_options["shuffle"] == "group": | |
430 val_split_options["labels"] = groups_train | |
431 if val_split_options["shuffle"] == "stratified": | |
432 if y_train is not None: | |
433 val_split_options["labels"] = y_train | |
434 else: | |
435 raise ValueError( | |
436 "Stratified shuffle split is not " | |
437 "applicable on empty target values!" | |
438 ) | |
439 | |
440 ( | |
441 X_train, | |
442 X_val, | |
443 y_train, | |
444 y_val, | |
445 groups_train, | |
446 _groups_val, | |
447 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
448 | |
449 # train and eval | |
450 if hasattr(estimator, "validation_data"): | |
451 if exp_scheme == "train_val_test": | |
452 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) | |
453 else: | |
454 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) | |
455 else: | |
456 estimator.fit(X_train, y_train) | |
457 | |
458 if hasattr(estimator, "evaluate"): | |
459 steps = estimator.prediction_steps | |
460 batch_size = estimator.batch_size | |
461 generator = estimator.data_generator_.flow( | |
462 X_test, y=y_test, batch_size=batch_size | |
463 ) | |
464 predictions, y_true = _predict_generator( | |
465 estimator.model_, generator, steps=steps | |
466 ) | |
467 scores = _evaluate(y_true, predictions, scorer, is_multimetric=True) | |
468 | |
469 else: | |
470 if hasattr(estimator, "predict_proba"): | |
471 predictions = estimator.predict_proba(X_test) | |
472 else: | |
473 predictions = estimator.predict(X_test) | |
474 | |
475 y_true = y_test | |
476 scores = _score(estimator, X_test, y_test, scorer, is_multimetric=True) | |
477 if outfile_y_true: | |
478 try: | |
479 pd.DataFrame(y_true).to_csv(outfile_y_true, sep="\t", index=False) | |
480 pd.DataFrame(predictions).astype(np.float32).to_csv( | |
481 outfile_y_preds, | |
482 sep="\t", | |
483 index=False, | |
484 float_format="%g", | |
485 chunksize=10000, | |
486 ) | |
487 except Exception as e: | |
488 print("Error in saving predictions: %s" % e) | |
489 | |
490 # handle output | |
491 for name, score in scores.items(): | |
492 scores[name] = [score] | |
493 df = pd.DataFrame(scores) | |
494 df = df[sorted(df.columns)] | |
495 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
496 | |
497 memory.clear(warn=False) | |
498 | |
499 if outfile_object: | |
500 main_est = estimator | |
501 if isinstance(estimator, Pipeline): | |
502 main_est = estimator.steps[-1][-1] | |
503 | |
504 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
505 if outfile_weights: | |
506 main_est.save_weights(outfile_weights) | |
507 del main_est.model_ | |
508 del main_est.fit_params | |
509 del main_est.model_class_ | |
510 if getattr(main_est, "validation_data", None): | |
511 del main_est.validation_data | |
512 if getattr(main_est, "data_generator_", None): | |
513 del main_est.data_generator_ | |
514 | |
515 with open(outfile_object, "wb") as output_handler: | |
516 pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) | |
517 | |
518 | |
519 if __name__ == "__main__": | |
520 aparser = argparse.ArgumentParser() | |
521 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
522 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
523 aparser.add_argument("-X", "--infile1", dest="infile1") | |
524 aparser.add_argument("-y", "--infile2", dest="infile2") | |
525 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
526 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
527 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
528 aparser.add_argument("-l", "--outfile_y_true", dest="outfile_y_true") | |
529 aparser.add_argument("-p", "--outfile_y_preds", dest="outfile_y_preds") | |
530 aparser.add_argument("-g", "--groups", dest="groups") | |
531 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
532 aparser.add_argument("-b", "--intervals", dest="intervals") | |
533 aparser.add_argument("-t", "--targets", dest="targets") | |
534 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
535 args = aparser.parse_args() | |
536 | |
537 main( | |
538 args.inputs, | |
539 args.infile_estimator, | |
540 args.infile1, | |
541 args.infile2, | |
542 args.outfile_result, | |
543 outfile_object=args.outfile_object, | |
544 outfile_weights=args.outfile_weights, | |
545 outfile_y_true=args.outfile_y_true, | |
546 outfile_y_preds=args.outfile_y_preds, | |
547 groups=args.groups, | |
548 ref_seq=args.ref_seq, | |
549 intervals=args.intervals, | |
550 targets=args.targets, | |
551 fasta_path=args.fasta_path, | |
552 ) |