Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
comparison model_prediction.py @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children | 9349ed2749c6 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:af2624d5ab32 |
---|---|
1 import argparse | |
2 import json | |
3 import warnings | |
4 | |
5 import numpy as np | |
6 import pandas as pd | |
7 from galaxy_ml.utils import get_module, load_model, read_columns, try_get_attr | |
8 from scipy.io import mmread | |
9 from sklearn.pipeline import Pipeline | |
10 | |
11 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | |
12 | |
13 | |
14 def main( | |
15 inputs, | |
16 infile_estimator, | |
17 outfile_predict, | |
18 infile_weights=None, | |
19 infile1=None, | |
20 fasta_path=None, | |
21 ref_seq=None, | |
22 vcf_path=None, | |
23 ): | |
24 """ | |
25 Parameter | |
26 --------- | |
27 inputs : str | |
28 File path to galaxy tool parameter | |
29 | |
30 infile_estimator : strgit | |
31 File path to trained estimator input | |
32 | |
33 outfile_predict : str | |
34 File path to save the prediction results, tabular | |
35 | |
36 infile_weights : str | |
37 File path to weights input | |
38 | |
39 infile1 : str | |
40 File path to dataset containing features | |
41 | |
42 fasta_path : str | |
43 File path to dataset containing fasta file | |
44 | |
45 ref_seq : str | |
46 File path to dataset containing the reference genome sequence. | |
47 | |
48 vcf_path : str | |
49 File path to dataset containing variants info. | |
50 """ | |
51 warnings.filterwarnings("ignore") | |
52 | |
53 with open(inputs, "r") as param_handler: | |
54 params = json.load(param_handler) | |
55 | |
56 # load model | |
57 with open(infile_estimator, "rb") as est_handler: | |
58 estimator = load_model(est_handler) | |
59 | |
60 main_est = estimator | |
61 if isinstance(estimator, Pipeline): | |
62 main_est = estimator.steps[-1][-1] | |
63 if hasattr(main_est, "config") and hasattr(main_est, "load_weights"): | |
64 if not infile_weights or infile_weights == "None": | |
65 raise ValueError( | |
66 "The selected model skeleton asks for weights, " | |
67 "but dataset for weights wan not selected!" | |
68 ) | |
69 main_est.load_weights(infile_weights) | |
70 | |
71 # handle data input | |
72 input_type = params["input_options"]["selected_input"] | |
73 # tabular input | |
74 if input_type == "tabular": | |
75 header = "infer" if params["input_options"]["header1"] else None | |
76 column_option = params["input_options"]["column_selector_options_1"][ | |
77 "selected_column_selector_option" | |
78 ] | |
79 if column_option in [ | |
80 "by_index_number", | |
81 "all_but_by_index_number", | |
82 "by_header_name", | |
83 "all_but_by_header_name", | |
84 ]: | |
85 c = params["input_options"]["column_selector_options_1"]["col1"] | |
86 else: | |
87 c = None | |
88 | |
89 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
90 | |
91 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
92 | |
93 if params["method"] == "predict": | |
94 preds = estimator.predict(X) | |
95 else: | |
96 preds = estimator.predict_proba(X) | |
97 | |
98 # sparse input | |
99 elif input_type == "sparse": | |
100 X = mmread(open(infile1, "r")) | |
101 if params["method"] == "predict": | |
102 preds = estimator.predict(X) | |
103 else: | |
104 preds = estimator.predict_proba(X) | |
105 | |
106 # fasta input | |
107 elif input_type == "seq_fasta": | |
108 if not hasattr(estimator, "data_batch_generator"): | |
109 raise ValueError( | |
110 "To do prediction on sequences in fasta input, " | |
111 "the estimator must be a `KerasGBatchClassifier`" | |
112 "equipped with data_batch_generator!" | |
113 ) | |
114 pyfaidx = get_module("pyfaidx") | |
115 sequences = pyfaidx.Fasta(fasta_path) | |
116 n_seqs = len(sequences.keys()) | |
117 X = np.arange(n_seqs)[:, np.newaxis] | |
118 seq_length = estimator.data_batch_generator.seq_length | |
119 batch_size = getattr(estimator, "batch_size", 32) | |
120 steps = (n_seqs + batch_size - 1) // batch_size | |
121 | |
122 seq_type = params["input_options"]["seq_type"] | |
123 klass = try_get_attr("galaxy_ml.preprocessors", seq_type) | |
124 | |
125 pred_data_generator = klass(fasta_path, seq_length=seq_length) | |
126 | |
127 if params["method"] == "predict": | |
128 preds = estimator.predict( | |
129 X, data_generator=pred_data_generator, steps=steps | |
130 ) | |
131 else: | |
132 preds = estimator.predict_proba( | |
133 X, data_generator=pred_data_generator, steps=steps | |
134 ) | |
135 | |
136 # vcf input | |
137 elif input_type == "variant_effect": | |
138 klass = try_get_attr("galaxy_ml.preprocessors", "GenomicVariantBatchGenerator") | |
139 | |
140 options = params["input_options"] | |
141 options.pop("selected_input") | |
142 if options["blacklist_regions"] == "none": | |
143 options["blacklist_regions"] = None | |
144 | |
145 pred_data_generator = klass( | |
146 ref_genome_path=ref_seq, vcf_path=vcf_path, **options | |
147 ) | |
148 | |
149 pred_data_generator.set_processing_attrs() | |
150 | |
151 variants = pred_data_generator.variants | |
152 | |
153 # predict 1600 sample at once then write to file | |
154 gen_flow = pred_data_generator.flow(batch_size=1600) | |
155 | |
156 file_writer = open(outfile_predict, "w") | |
157 header_row = "\t".join(["chrom", "pos", "name", "ref", "alt", "strand"]) | |
158 file_writer.write(header_row) | |
159 header_done = False | |
160 | |
161 steps_done = 0 | |
162 | |
163 # TODO: multiple threading | |
164 try: | |
165 while steps_done < len(gen_flow): | |
166 index_array = next(gen_flow.index_generator) | |
167 batch_X = gen_flow._get_batches_of_transformed_samples(index_array) | |
168 | |
169 if params["method"] == "predict": | |
170 batch_preds = estimator.predict( | |
171 batch_X, | |
172 # The presence of `pred_data_generator` below is to | |
173 # override model carrying data_generator if there | |
174 # is any. | |
175 data_generator=pred_data_generator, | |
176 ) | |
177 else: | |
178 batch_preds = estimator.predict_proba( | |
179 batch_X, | |
180 # The presence of `pred_data_generator` below is to | |
181 # override model carrying data_generator if there | |
182 # is any. | |
183 data_generator=pred_data_generator, | |
184 ) | |
185 | |
186 if batch_preds.ndim == 1: | |
187 batch_preds = batch_preds[:, np.newaxis] | |
188 | |
189 batch_meta = variants[index_array] | |
190 batch_out = np.column_stack([batch_meta, batch_preds]) | |
191 | |
192 if not header_done: | |
193 heads = np.arange(batch_preds.shape[-1]).astype(str) | |
194 heads_str = "\t".join(heads) | |
195 file_writer.write("\t%s\n" % heads_str) | |
196 header_done = True | |
197 | |
198 for row in batch_out: | |
199 row_str = "\t".join(row) | |
200 file_writer.write("%s\n" % row_str) | |
201 | |
202 steps_done += 1 | |
203 | |
204 finally: | |
205 file_writer.close() | |
206 # TODO: make api `pred_data_generator.close()` | |
207 pred_data_generator.close() | |
208 return 0 | |
209 # end input | |
210 | |
211 # output | |
212 if len(preds.shape) == 1: | |
213 rval = pd.DataFrame(preds, columns=["Predicted"]) | |
214 else: | |
215 rval = pd.DataFrame(preds) | |
216 | |
217 rval.to_csv(outfile_predict, sep="\t", header=True, index=False) | |
218 | |
219 | |
220 if __name__ == "__main__": | |
221 aparser = argparse.ArgumentParser() | |
222 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
223 aparser.add_argument("-e", "--infile_estimator", dest="infile_estimator") | |
224 aparser.add_argument("-w", "--infile_weights", dest="infile_weights") | |
225 aparser.add_argument("-X", "--infile1", dest="infile1") | |
226 aparser.add_argument("-O", "--outfile_predict", dest="outfile_predict") | |
227 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
228 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
229 aparser.add_argument("-v", "--vcf_path", dest="vcf_path") | |
230 args = aparser.parse_args() | |
231 | |
232 main( | |
233 args.inputs, | |
234 args.infile_estimator, | |
235 args.outfile_predict, | |
236 infile_weights=args.infile_weights, | |
237 infile1=args.infile1, | |
238 fasta_path=args.fasta_path, | |
239 ref_seq=args.ref_seq, | |
240 vcf_path=args.vcf_path, | |
241 ) |