Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
comparison search_model_validation.py @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children | 9349ed2749c6 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:af2624d5ab32 |
---|---|
1 import argparse | |
2 import collections | |
3 import json | |
4 import os | |
5 import pickle | |
6 import sys | |
7 import warnings | |
8 | |
9 import imblearn | |
10 import joblib | |
11 import numpy as np | |
12 import pandas as pd | |
13 import skrebate | |
14 from galaxy_ml.utils import (clean_params, get_cv, | |
15 get_main_estimator, get_module, get_scoring, | |
16 load_model, read_columns, SafeEval, try_get_attr) | |
17 from scipy.io import mmread | |
18 from sklearn import (cluster, decomposition, feature_selection, | |
19 kernel_approximation, model_selection, preprocessing) | |
20 from sklearn.exceptions import FitFailedWarning | |
21 from sklearn.model_selection import _search, _validation | |
22 from sklearn.model_selection._validation import _score, cross_validate | |
23 | |
24 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
25 setattr(_search, "_fit_and_score", _fit_and_score) | |
26 setattr(_validation, "_fit_and_score", _fit_and_score) | |
27 | |
28 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
29 # handle disk cache | |
30 CACHE_DIR = os.path.join(os.getcwd(), "cached") | |
31 del os | |
32 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | |
33 | |
34 | |
35 def _eval_search_params(params_builder): | |
36 search_params = {} | |
37 | |
38 for p in params_builder["param_set"]: | |
39 search_list = p["sp_list"].strip() | |
40 if search_list == "": | |
41 continue | |
42 | |
43 param_name = p["sp_name"] | |
44 if param_name.lower().endswith(NON_SEARCHABLE): | |
45 print( | |
46 "Warning: `%s` is not eligible for search and was " | |
47 "omitted!" % param_name | |
48 ) | |
49 continue | |
50 | |
51 if not search_list.startswith(":"): | |
52 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
53 ev = safe_eval(search_list) | |
54 search_params[param_name] = ev | |
55 else: | |
56 # Have `:` before search list, asks for estimator evaluatio | |
57 safe_eval_es = SafeEval(load_estimators=True) | |
58 search_list = search_list[1:].strip() | |
59 # TODO maybe add regular express check | |
60 ev = safe_eval_es(search_list) | |
61 preprocessings = ( | |
62 preprocessing.StandardScaler(), | |
63 preprocessing.Binarizer(), | |
64 preprocessing.MaxAbsScaler(), | |
65 preprocessing.Normalizer(), | |
66 preprocessing.MinMaxScaler(), | |
67 preprocessing.PolynomialFeatures(), | |
68 preprocessing.RobustScaler(), | |
69 feature_selection.SelectKBest(), | |
70 feature_selection.GenericUnivariateSelect(), | |
71 feature_selection.SelectPercentile(), | |
72 feature_selection.SelectFpr(), | |
73 feature_selection.SelectFdr(), | |
74 feature_selection.SelectFwe(), | |
75 feature_selection.VarianceThreshold(), | |
76 decomposition.FactorAnalysis(random_state=0), | |
77 decomposition.FastICA(random_state=0), | |
78 decomposition.IncrementalPCA(), | |
79 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
80 decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), | |
81 decomposition.MiniBatchDictionaryLearning( | |
82 random_state=0, n_jobs=N_JOBS | |
83 ), | |
84 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), | |
85 decomposition.NMF(random_state=0), | |
86 decomposition.PCA(random_state=0), | |
87 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
88 decomposition.TruncatedSVD(random_state=0), | |
89 kernel_approximation.Nystroem(random_state=0), | |
90 kernel_approximation.RBFSampler(random_state=0), | |
91 kernel_approximation.AdditiveChi2Sampler(), | |
92 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
93 cluster.FeatureAgglomeration(), | |
94 skrebate.ReliefF(n_jobs=N_JOBS), | |
95 skrebate.SURF(n_jobs=N_JOBS), | |
96 skrebate.SURFstar(n_jobs=N_JOBS), | |
97 skrebate.MultiSURF(n_jobs=N_JOBS), | |
98 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
99 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), | |
100 imblearn.under_sampling.CondensedNearestNeighbour( | |
101 random_state=0, n_jobs=N_JOBS | |
102 ), | |
103 imblearn.under_sampling.EditedNearestNeighbours( | |
104 random_state=0, n_jobs=N_JOBS | |
105 ), | |
106 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
107 random_state=0, n_jobs=N_JOBS | |
108 ), | |
109 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
110 imblearn.under_sampling.InstanceHardnessThreshold( | |
111 random_state=0, n_jobs=N_JOBS | |
112 ), | |
113 imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), | |
114 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
115 random_state=0, n_jobs=N_JOBS | |
116 ), | |
117 imblearn.under_sampling.OneSidedSelection( | |
118 random_state=0, n_jobs=N_JOBS | |
119 ), | |
120 imblearn.under_sampling.RandomUnderSampler(random_state=0), | |
121 imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), | |
122 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
123 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
124 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
125 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
126 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), | |
127 imblearn.over_sampling.SMOTENC( | |
128 categorical_features=[], random_state=0, n_jobs=N_JOBS | |
129 ), | |
130 imblearn.combine.SMOTEENN(random_state=0), | |
131 imblearn.combine.SMOTETomek(random_state=0), | |
132 ) | |
133 newlist = [] | |
134 for obj in ev: | |
135 if obj is None: | |
136 newlist.append(None) | |
137 elif obj == "all_0": | |
138 newlist.extend(preprocessings[0:35]) | |
139 elif obj == "sk_prep_all": # no KernalCenter() | |
140 newlist.extend(preprocessings[0:7]) | |
141 elif obj == "fs_all": | |
142 newlist.extend(preprocessings[7:14]) | |
143 elif obj == "decomp_all": | |
144 newlist.extend(preprocessings[14:25]) | |
145 elif obj == "k_appr_all": | |
146 newlist.extend(preprocessings[25:29]) | |
147 elif obj == "reb_all": | |
148 newlist.extend(preprocessings[30:35]) | |
149 elif obj == "imb_all": | |
150 newlist.extend(preprocessings[35:54]) | |
151 elif type(obj) is int and -1 < obj < len(preprocessings): | |
152 newlist.append(preprocessings[obj]) | |
153 elif hasattr(obj, "get_params"): # user uploaded object | |
154 if "n_jobs" in obj.get_params(): | |
155 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
156 else: | |
157 newlist.append(obj) | |
158 else: | |
159 sys.exit("Unsupported estimator type: %r" % (obj)) | |
160 | |
161 search_params[param_name] = newlist | |
162 | |
163 return search_params | |
164 | |
165 | |
166 def _handle_X_y( | |
167 estimator, | |
168 params, | |
169 infile1, | |
170 infile2, | |
171 loaded_df={}, | |
172 ref_seq=None, | |
173 intervals=None, | |
174 targets=None, | |
175 fasta_path=None, | |
176 ): | |
177 """read inputs | |
178 | |
179 Params | |
180 ------- | |
181 estimator : estimator object | |
182 params : dict | |
183 Galaxy tool parameter inputs | |
184 infile1 : str | |
185 File path to dataset containing features | |
186 infile2 : str | |
187 File path to dataset containing target values | |
188 loaded_df : dict | |
189 Contains loaded DataFrame objects with file path as keys | |
190 ref_seq : str | |
191 File path to dataset containing genome sequence file | |
192 interval : str | |
193 File path to dataset containing interval file | |
194 targets : str | |
195 File path to dataset compressed target bed file | |
196 fasta_path : str | |
197 File path to dataset containing fasta file | |
198 | |
199 | |
200 Returns | |
201 ------- | |
202 estimator : estimator object after setting new attributes | |
203 X : numpy array | |
204 y : numpy array | |
205 """ | |
206 estimator_params = estimator.get_params() | |
207 | |
208 input_type = params["input_options"]["selected_input"] | |
209 # tabular input | |
210 if input_type == "tabular": | |
211 header = "infer" if params["input_options"]["header1"] else None | |
212 column_option = params["input_options"]["column_selector_options_1"][ | |
213 "selected_column_selector_option" | |
214 ] | |
215 if column_option in [ | |
216 "by_index_number", | |
217 "all_but_by_index_number", | |
218 "by_header_name", | |
219 "all_but_by_header_name", | |
220 ]: | |
221 c = params["input_options"]["column_selector_options_1"]["col1"] | |
222 else: | |
223 c = None | |
224 | |
225 df_key = infile1 + repr(header) | |
226 | |
227 if df_key in loaded_df: | |
228 infile1 = loaded_df[df_key] | |
229 | |
230 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | |
231 loaded_df[df_key] = df | |
232 | |
233 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
234 # sparse input | |
235 elif input_type == "sparse": | |
236 X = mmread(open(infile1, "r")) | |
237 | |
238 # fasta_file input | |
239 elif input_type == "seq_fasta": | |
240 pyfaidx = get_module("pyfaidx") | |
241 sequences = pyfaidx.Fasta(fasta_path) | |
242 n_seqs = len(sequences.keys()) | |
243 X = np.arange(n_seqs)[:, np.newaxis] | |
244 for param in estimator_params.keys(): | |
245 if param.endswith("fasta_path"): | |
246 estimator.set_params(**{param: fasta_path}) | |
247 break | |
248 else: | |
249 raise ValueError( | |
250 "The selected estimator doesn't support " | |
251 "fasta file input! Please consider using " | |
252 "KerasGBatchClassifier with " | |
253 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | |
254 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | |
255 "in pipeline!" | |
256 ) | |
257 | |
258 elif input_type == "refseq_and_interval": | |
259 path_params = { | |
260 "data_batch_generator__ref_genome_path": ref_seq, | |
261 "data_batch_generator__intervals_path": intervals, | |
262 "data_batch_generator__target_path": targets, | |
263 } | |
264 estimator.set_params(**path_params) | |
265 n_intervals = sum(1 for line in open(intervals)) | |
266 X = np.arange(n_intervals)[:, np.newaxis] | |
267 | |
268 # Get target y | |
269 header = "infer" if params["input_options"]["header2"] else None | |
270 column_option = params["input_options"]["column_selector_options_2"][ | |
271 "selected_column_selector_option2" | |
272 ] | |
273 if column_option in [ | |
274 "by_index_number", | |
275 "all_but_by_index_number", | |
276 "by_header_name", | |
277 "all_but_by_header_name", | |
278 ]: | |
279 c = params["input_options"]["column_selector_options_2"]["col2"] | |
280 else: | |
281 c = None | |
282 | |
283 df_key = infile2 + repr(header) | |
284 if df_key in loaded_df: | |
285 infile2 = loaded_df[df_key] | |
286 else: | |
287 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | |
288 loaded_df[df_key] = infile2 | |
289 | |
290 y = read_columns( | |
291 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True | |
292 ) | |
293 if len(y.shape) == 2 and y.shape[1] == 1: | |
294 y = y.ravel() | |
295 if input_type == "refseq_and_interval": | |
296 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | |
297 y = None | |
298 # end y | |
299 | |
300 return estimator, X, y | |
301 | |
302 | |
303 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score="raise", outfile=None): | |
304 """Do outer cross-validation for nested CV | |
305 | |
306 Parameters | |
307 ---------- | |
308 searcher : object | |
309 SearchCV object | |
310 X : numpy array | |
311 Containing features | |
312 y : numpy array | |
313 Target values or labels | |
314 outer_cv : int or CV splitter | |
315 Control the cv splitting | |
316 scoring : object | |
317 Scorer | |
318 error_score: str, float or numpy float | |
319 Whether to raise fit error or return an value | |
320 outfile : str | |
321 File path to store the restuls | |
322 """ | |
323 if error_score == "raise": | |
324 rval = cross_validate( | |
325 searcher, | |
326 X, | |
327 y, | |
328 scoring=scoring, | |
329 cv=outer_cv, | |
330 n_jobs=N_JOBS, | |
331 verbose=0, | |
332 error_score=error_score, | |
333 ) | |
334 else: | |
335 warnings.simplefilter("always", FitFailedWarning) | |
336 with warnings.catch_warnings(record=True) as w: | |
337 try: | |
338 rval = cross_validate( | |
339 searcher, | |
340 X, | |
341 y, | |
342 scoring=scoring, | |
343 cv=outer_cv, | |
344 n_jobs=N_JOBS, | |
345 verbose=0, | |
346 error_score=error_score, | |
347 ) | |
348 except ValueError: | |
349 pass | |
350 for warning in w: | |
351 print(repr(warning.message)) | |
352 | |
353 keys = list(rval.keys()) | |
354 for k in keys: | |
355 if k.startswith("test"): | |
356 rval["mean_" + k] = np.mean(rval[k]) | |
357 rval["std_" + k] = np.std(rval[k]) | |
358 if k.endswith("time"): | |
359 rval.pop(k) | |
360 rval = pd.DataFrame(rval) | |
361 rval = rval[sorted(rval.columns)] | |
362 rval.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | |
363 | |
364 | |
365 def _do_train_test_split_val( | |
366 searcher, | |
367 X, | |
368 y, | |
369 params, | |
370 error_score="raise", | |
371 primary_scoring=None, | |
372 groups=None, | |
373 outfile=None, | |
374 ): | |
375 """do train test split, searchCV validates on the train and then use | |
376 the best_estimator_ to evaluate on the test | |
377 | |
378 Returns | |
379 -------- | |
380 Fitted SearchCV object | |
381 """ | |
382 train_test_split = try_get_attr("galaxy_ml.model_validations", "train_test_split") | |
383 split_options = params["outer_split"] | |
384 | |
385 # splits | |
386 if split_options["shuffle"] == "stratified": | |
387 split_options["labels"] = y | |
388 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
389 elif split_options["shuffle"] == "group": | |
390 if groups is None: | |
391 raise ValueError( | |
392 "No group based CV option was choosen for " "group shuffle!" | |
393 ) | |
394 split_options["labels"] = groups | |
395 if y is None: | |
396 X, X_test, groups, _ = train_test_split(X, groups, **split_options) | |
397 else: | |
398 X, X_test, y, y_test, groups, _ = train_test_split( | |
399 X, y, groups, **split_options | |
400 ) | |
401 else: | |
402 if split_options["shuffle"] == "None": | |
403 split_options["shuffle"] = None | |
404 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
405 | |
406 if error_score == "raise": | |
407 searcher.fit(X, y, groups=groups) | |
408 else: | |
409 warnings.simplefilter("always", FitFailedWarning) | |
410 with warnings.catch_warnings(record=True) as w: | |
411 try: | |
412 searcher.fit(X, y, groups=groups) | |
413 except ValueError: | |
414 pass | |
415 for warning in w: | |
416 print(repr(warning.message)) | |
417 | |
418 scorer_ = searcher.scorer_ | |
419 if isinstance(scorer_, collections.Mapping): | |
420 is_multimetric = True | |
421 else: | |
422 is_multimetric = False | |
423 | |
424 best_estimator_ = getattr(searcher, "best_estimator_") | |
425 | |
426 # TODO Solve deep learning models in pipeline | |
427 if best_estimator_.__class__.__name__ == "KerasGBatchClassifier": | |
428 test_score = best_estimator_.evaluate( | |
429 X_test, scorer=scorer_, is_multimetric=is_multimetric | |
430 ) | |
431 else: | |
432 test_score = _score( | |
433 best_estimator_, X_test, y_test, scorer_, is_multimetric=is_multimetric | |
434 ) | |
435 | |
436 if not is_multimetric: | |
437 test_score = {primary_scoring: test_score} | |
438 for key, value in test_score.items(): | |
439 test_score[key] = [value] | |
440 result_df = pd.DataFrame(test_score) | |
441 result_df.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | |
442 | |
443 return searcher | |
444 | |
445 | |
446 def main( | |
447 inputs, | |
448 infile_estimator, | |
449 infile1, | |
450 infile2, | |
451 outfile_result, | |
452 outfile_object=None, | |
453 outfile_weights=None, | |
454 groups=None, | |
455 ref_seq=None, | |
456 intervals=None, | |
457 targets=None, | |
458 fasta_path=None, | |
459 ): | |
460 """ | |
461 Parameter | |
462 --------- | |
463 inputs : str | |
464 File path to galaxy tool parameter | |
465 | |
466 infile_estimator : str | |
467 File path to estimator | |
468 | |
469 infile1 : str | |
470 File path to dataset containing features | |
471 | |
472 infile2 : str | |
473 File path to dataset containing target values | |
474 | |
475 outfile_result : str | |
476 File path to save the results, either cv_results or test result | |
477 | |
478 outfile_object : str, optional | |
479 File path to save searchCV object | |
480 | |
481 outfile_weights : str, optional | |
482 File path to save model weights | |
483 | |
484 groups : str | |
485 File path to dataset containing groups labels | |
486 | |
487 ref_seq : str | |
488 File path to dataset containing genome sequence file | |
489 | |
490 intervals : str | |
491 File path to dataset containing interval file | |
492 | |
493 targets : str | |
494 File path to dataset compressed target bed file | |
495 | |
496 fasta_path : str | |
497 File path to dataset containing fasta file | |
498 """ | |
499 warnings.simplefilter("ignore") | |
500 | |
501 # store read dataframe object | |
502 loaded_df = {} | |
503 | |
504 with open(inputs, "r") as param_handler: | |
505 params = json.load(param_handler) | |
506 | |
507 # Override the refit parameter | |
508 params["search_schemes"]["options"]["refit"] = ( | |
509 True if params["save"] != "nope" else False | |
510 ) | |
511 | |
512 with open(infile_estimator, "rb") as estimator_handler: | |
513 estimator = load_model(estimator_handler) | |
514 | |
515 optimizer = params["search_schemes"]["selected_search_scheme"] | |
516 optimizer = getattr(model_selection, optimizer) | |
517 | |
518 # handle gridsearchcv options | |
519 options = params["search_schemes"]["options"] | |
520 | |
521 if groups: | |
522 header = ( | |
523 "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None | |
524 ) | |
525 column_option = options["cv_selector"]["groups_selector"][ | |
526 "column_selector_options_g" | |
527 ]["selected_column_selector_option_g"] | |
528 if column_option in [ | |
529 "by_index_number", | |
530 "all_but_by_index_number", | |
531 "by_header_name", | |
532 "all_but_by_header_name", | |
533 ]: | |
534 c = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ | |
535 "col_g" | |
536 ] | |
537 else: | |
538 c = None | |
539 | |
540 df_key = groups + repr(header) | |
541 | |
542 groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) | |
543 loaded_df[df_key] = groups | |
544 | |
545 groups = read_columns( | |
546 groups, | |
547 c=c, | |
548 c_option=column_option, | |
549 sep="\t", | |
550 header=header, | |
551 parse_dates=True, | |
552 ) | |
553 groups = groups.ravel() | |
554 options["cv_selector"]["groups_selector"] = groups | |
555 | |
556 splitter, groups = get_cv(options.pop("cv_selector")) | |
557 options["cv"] = splitter | |
558 primary_scoring = options["scoring"]["primary_scoring"] | |
559 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
560 # Check if secondary_scoring is specified | |
561 secondary_scoring = options["scoring"].get("secondary_scoring", None) | |
562 if secondary_scoring is not None: | |
563 # If secondary_scoring is specified, convert the list into comman separated string | |
564 options["scoring"]["secondary_scoring"] = ",".join( | |
565 options["scoring"]["secondary_scoring"] | |
566 ) | |
567 options["scoring"] = get_scoring(options["scoring"]) | |
568 if options["error_score"]: | |
569 options["error_score"] = "raise" | |
570 else: | |
571 options["error_score"] = np.nan | |
572 if options["refit"] and isinstance(options["scoring"], dict): | |
573 options["refit"] = primary_scoring | |
574 if "pre_dispatch" in options and options["pre_dispatch"] == "": | |
575 options["pre_dispatch"] = None | |
576 | |
577 params_builder = params["search_schemes"]["search_params_builder"] | |
578 param_grid = _eval_search_params(params_builder) | |
579 | |
580 estimator = clean_params(estimator) | |
581 | |
582 # save the SearchCV object without fit | |
583 if params["save"] == "save_no_fit": | |
584 searcher = optimizer(estimator, param_grid, **options) | |
585 print(searcher) | |
586 with open(outfile_object, "wb") as output_handler: | |
587 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) | |
588 return 0 | |
589 | |
590 # read inputs and loads new attributes, like paths | |
591 estimator, X, y = _handle_X_y( | |
592 estimator, | |
593 params, | |
594 infile1, | |
595 infile2, | |
596 loaded_df=loaded_df, | |
597 ref_seq=ref_seq, | |
598 intervals=intervals, | |
599 targets=targets, | |
600 fasta_path=fasta_path, | |
601 ) | |
602 | |
603 # cache iraps_core fits could increase search speed significantly | |
604 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
605 main_est = get_main_estimator(estimator) | |
606 if main_est.__class__.__name__ == "IRAPSClassifier": | |
607 main_est.set_params(memory=memory) | |
608 | |
609 searcher = optimizer(estimator, param_grid, **options) | |
610 | |
611 split_mode = params["outer_split"].pop("split_mode") | |
612 | |
613 if split_mode == "nested_cv": | |
614 # make sure refit is choosen | |
615 # this could be True for sklearn models, but not the case for | |
616 # deep learning models | |
617 if not options["refit"] and not all( | |
618 hasattr(estimator, attr) for attr in ("config", "model_type") | |
619 ): | |
620 warnings.warn("Refit is change to `True` for nested validation!") | |
621 setattr(searcher, "refit", True) | |
622 | |
623 outer_cv, _ = get_cv(params["outer_split"]["cv_selector"]) | |
624 # nested CV, outer cv using cross_validate | |
625 if options["error_score"] == "raise": | |
626 rval = cross_validate( | |
627 searcher, | |
628 X, | |
629 y, | |
630 scoring=options["scoring"], | |
631 cv=outer_cv, | |
632 n_jobs=N_JOBS, | |
633 verbose=options["verbose"], | |
634 return_estimator=(params["save"] == "save_estimator"), | |
635 error_score=options["error_score"], | |
636 return_train_score=True, | |
637 ) | |
638 else: | |
639 warnings.simplefilter("always", FitFailedWarning) | |
640 with warnings.catch_warnings(record=True) as w: | |
641 try: | |
642 rval = cross_validate( | |
643 searcher, | |
644 X, | |
645 y, | |
646 scoring=options["scoring"], | |
647 cv=outer_cv, | |
648 n_jobs=N_JOBS, | |
649 verbose=options["verbose"], | |
650 return_estimator=(params["save"] == "save_estimator"), | |
651 error_score=options["error_score"], | |
652 return_train_score=True, | |
653 ) | |
654 except ValueError: | |
655 pass | |
656 for warning in w: | |
657 print(repr(warning.message)) | |
658 | |
659 fitted_searchers = rval.pop("estimator", []) | |
660 if fitted_searchers: | |
661 import os | |
662 | |
663 pwd = os.getcwd() | |
664 save_dir = os.path.join(pwd, "cv_results_in_folds") | |
665 try: | |
666 os.mkdir(save_dir) | |
667 for idx, obj in enumerate(fitted_searchers): | |
668 target_name = "cv_results_" + "_" + "split%d" % idx | |
669 target_path = os.path.join(pwd, save_dir, target_name) | |
670 cv_results_ = getattr(obj, "cv_results_", None) | |
671 if not cv_results_: | |
672 print("%s is not available" % target_name) | |
673 continue | |
674 cv_results_ = pd.DataFrame(cv_results_) | |
675 cv_results_ = cv_results_[sorted(cv_results_.columns)] | |
676 cv_results_.to_csv(target_path, sep="\t", header=True, index=False) | |
677 except Exception as e: | |
678 print(e) | |
679 finally: | |
680 del os | |
681 | |
682 keys = list(rval.keys()) | |
683 for k in keys: | |
684 if k.startswith("test"): | |
685 rval["mean_" + k] = np.mean(rval[k]) | |
686 rval["std_" + k] = np.std(rval[k]) | |
687 if k.endswith("time"): | |
688 rval.pop(k) | |
689 rval = pd.DataFrame(rval) | |
690 rval = rval[sorted(rval.columns)] | |
691 rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | |
692 # deprecate train test split mode | |
693 """searcher = _do_train_test_split_val( | |
694 searcher, X, y, params, | |
695 primary_scoring=primary_scoring, | |
696 error_score=options['error_score'], | |
697 groups=groups, | |
698 outfile=outfile_result)""" | |
699 return 0 | |
700 | |
701 # no outer split | |
702 else: | |
703 searcher.set_params(n_jobs=N_JOBS) | |
704 if options["error_score"] == "raise": | |
705 searcher.fit(X, y, groups=groups) | |
706 else: | |
707 warnings.simplefilter("always", FitFailedWarning) | |
708 with warnings.catch_warnings(record=True) as w: | |
709 try: | |
710 searcher.fit(X, y, groups=groups) | |
711 except ValueError: | |
712 pass | |
713 for warning in w: | |
714 print(repr(warning.message)) | |
715 | |
716 cv_results = pd.DataFrame(searcher.cv_results_) | |
717 cv_results = cv_results[sorted(cv_results.columns)] | |
718 cv_results.to_csv( | |
719 path_or_buf=outfile_result, sep="\t", header=True, index=False | |
720 ) | |
721 | |
722 memory.clear(warn=False) | |
723 | |
724 # output best estimator, and weights if applicable | |
725 if outfile_object: | |
726 best_estimator_ = getattr(searcher, "best_estimator_", None) | |
727 if not best_estimator_: | |
728 warnings.warn( | |
729 "GridSearchCV object has no attribute " | |
730 "'best_estimator_', because either it's " | |
731 "nested gridsearch or `refit` is False!" | |
732 ) | |
733 return | |
734 | |
735 # clean prams | |
736 best_estimator_ = clean_params(best_estimator_) | |
737 | |
738 main_est = get_main_estimator(best_estimator_) | |
739 | |
740 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | |
741 if outfile_weights: | |
742 main_est.save_weights(outfile_weights) | |
743 del main_est.model_ | |
744 del main_est.fit_params | |
745 del main_est.model_class_ | |
746 del main_est.validation_data | |
747 if getattr(main_est, "data_generator_", None): | |
748 del main_est.data_generator_ | |
749 | |
750 with open(outfile_object, "wb") as output_handler: | |
751 print("Best estimator is saved: %s " % repr(best_estimator_)) | |
752 pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) | |
753 | |
754 | |
755 if __name__ == "__main__": | |
756 aparser = argparse.ArgumentParser() | |
757 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
758 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
759 aparser.add_argument("-X", "--infile1", dest="infile1") | |
760 aparser.add_argument("-y", "--infile2", dest="infile2") | |
761 aparser.add_argument("-O", "--outfile_result", dest="outfile_result") | |
762 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
763 aparser.add_argument("-w", "--outfile_weights", dest="outfile_weights") | |
764 aparser.add_argument("-g", "--groups", dest="groups") | |
765 aparser.add_argument("-r", "--ref_seq", dest="ref_seq") | |
766 aparser.add_argument("-b", "--intervals", dest="intervals") | |
767 aparser.add_argument("-t", "--targets", dest="targets") | |
768 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | |
769 args = aparser.parse_args() | |
770 | |
771 main( | |
772 args.inputs, | |
773 args.infile_estimator, | |
774 args.infile1, | |
775 args.infile2, | |
776 args.outfile_result, | |
777 outfile_object=args.outfile_object, | |
778 outfile_weights=args.outfile_weights, | |
779 groups=args.groups, | |
780 ref_seq=args.ref_seq, | |
781 intervals=args.intervals, | |
782 targets=args.targets, | |
783 fasta_path=args.fasta_path, | |
784 ) |