Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
diff association_rules.xml @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/association_rules.xml Sat May 01 01:24:32 2021 +0000 @@ -0,0 +1,119 @@ +<tool id="sklearn_mlxtend_association_rules" name="Association rules" version="@VERSION@"> + <description>Extract frequent itemsets and generate association rules</description> + <macros> + <import>main_macros.xml</import> + </macros> + <expand macro="python_requirements"/> + <expand macro="macro_stdio"/> + <version_command>echo "@VERSION@"</version_command> + <command detect_errors="exit_code"><![CDATA[ + python '$__tool_directory__/association_rules.py' + --inputs '$inputs' + --infile '$infile' + --outfile '$outfile' + #if $support + --support '$support' + #end if + #if $confidence + --confidence '$confidence' + #end if + #if $lift + --lift '$lift' + #end if + #if $conviction + --conviction '$conviction' + #end if + #if $length + --length '$length' + #end if + ]]> + </command> + <configfiles> + <inputs name="inputs" /> + </configfiles> + <inputs> + <param name="infile" type="data" format="tabular" label="Input file"/> + <param name="header0" type="boolean" optional="true" truevalue="booltrue" falsevalue="boolfalse" checked="true" label="Does the dataset contain header?"/> + <param name="support" type="float" optional="true" label="Minimum support"/> + <param name="confidence" type="float" optional="true" label="Minimum confidence"/> + <param name="lift" type="float" optional="true" label="Minimum lift"/> + <param name="conviction" type="float" optional="true" label="Minimum conviction"/> + <param name="length" type="integer" optional="true" label="Maximum length"/> + </inputs> + <outputs> + <data name="outfile" format="tabular"/> + </outputs> + <tests> + <test> + <param name="infile" value="mba_input_str_w.tabular" ftype="tabular"/> + <param name="header0" value="true"/> + <param name="support" value="0.5"/> + <param name="confidence" value="0.5"/> + <param name="lift" value="1.1"/> + <param name="conviction" value="1.1"/> + <param name="length" value="5"/> + <output name="outfile" file="mba_out_str.tabular" ftype="tabular"/> + </test> + <test> + <param name="infile" value="mba_input_int_w.tabular" ftype="tabular"/> + <param name="header0" value="true"/> + <param name="support" value="0.5"/> + <param name="confidence" value="0.5"/> + <param name="lift" value="1.1"/> + <param name="conviction" value="1.1"/> + <param name="length" value="5"/> + <output name="outfile" file="mba_output_int.tabular" ftype="tabular"/> + </test> + <test> + <param name="infile" value="mba_input_str_wo.tabular" ftype="tabular"/> + <param name="header0" value="false"/> + <param name="support" value="0.5"/> + <param name="confidence" value="0.5"/> + <param name="lift" value="1.1"/> + <param name="conviction" value="1.1"/> + <param name="length" value="5"/> + <output name="outfile" file="mba_output_str.tabular" ftype="tabular"/> + </test> + <test> + <param name="infile" value="mba_input_int_wo.tabular" ftype="tabular"/> + <param name="header0" value="false"/> + <param name="support" value="0.5"/> + <param name="confidence" value="0.5"/> + <param name="lift" value="1.1"/> + <param name="conviction" value="1.1"/> + <param name="length" value="5"/> + <output name="outfile" file="mba_output_int.tabular" ftype="tabular"/> + </test> + </tests> + <help><![CDATA[ +**What it does** + +Extract frequent itemsets and generate association rules + +from mlxtend.frequent_patterns import fpgrowth + +Extracts frequent itemsets for association rule mining. An itemset is considered as "frequent" if it +meets a user-specified support threshold. For instance, if the support threshold is set to 0.5 (50%), +a frequent itemset is defined as a set of items that occur together in at least 50% of all transactions +in the database. We can only get itemsets that have a maximum number of items via length input parameter. + +from mlxtend.frequent_patterns import association_rules + +Generates association rules from frequent itemsets. Rule generation is a common task in the mining of +frequent patterns. An association rule is an implication expression of the form X->Y, where X and Y +are disjoint itemsets. A more concrete example based on consumer behaviour would be {Diapers}->{Beer} +suggesting that people who buy diapers are also likely to buy beer. To evaluate the "interest" of +such an association rule, different metrics have been developed, e.g., confidence, lift, and conviction. + +Arguments + +infile: Each line in infile contains (tab-separated) items in a tranasaction. Different lines/transactions +can have differnt/varying number of items. + +Returns + +outfile: A tab separated file, that has an association rule on each line, with various metrics listed. + + ]]></help> + <expand macro="sklearn_citation"/> +</tool>