Mercurial > repos > bgruening > sklearn_mlxtend_association_rules
diff simple_model_fit.py @ 0:af2624d5ab32 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
author | bgruening |
---|---|
date | Sat, 01 May 2021 01:24:32 +0000 |
parents | |
children | 9349ed2749c6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/simple_model_fit.py Sat May 01 01:24:32 2021 +0000 @@ -0,0 +1,194 @@ +import argparse +import json +import pickle + +import pandas as pd +from galaxy_ml.utils import load_model, read_columns +from scipy.io import mmread +from sklearn.pipeline import Pipeline + +N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) + + +# TODO import from galaxy_ml.utils in future versions +def clean_params(estimator, n_jobs=None): + """clean unwanted hyperparameter settings + + If n_jobs is not None, set it into the estimator, if applicable + + Return + ------ + Cleaned estimator object + """ + ALLOWED_CALLBACKS = ( + "EarlyStopping", + "TerminateOnNaN", + "ReduceLROnPlateau", + "CSVLogger", + "None", + ) + + estimator_params = estimator.get_params() + + for name, p in estimator_params.items(): + # all potential unauthorized file write + if name == "memory" or name.endswith("__memory") or name.endswith("_path"): + new_p = {name: None} + estimator.set_params(**new_p) + elif n_jobs is not None and (name == "n_jobs" or name.endswith("__n_jobs")): + new_p = {name: n_jobs} + estimator.set_params(**new_p) + elif name.endswith("callbacks"): + for cb in p: + cb_type = cb["callback_selection"]["callback_type"] + if cb_type not in ALLOWED_CALLBACKS: + raise ValueError("Prohibited callback type: %s!" % cb_type) + + return estimator + + +def _get_X_y(params, infile1, infile2): + """read from inputs and output X and y + + Parameters + ---------- + params : dict + Tool inputs parameter + infile1 : str + File path to dataset containing features + infile2 : str + File path to dataset containing target values + + """ + # store read dataframe object + loaded_df = {} + + input_type = params["input_options"]["selected_input"] + # tabular input + if input_type == "tabular": + header = "infer" if params["input_options"]["header1"] else None + column_option = params["input_options"]["column_selector_options_1"][ + "selected_column_selector_option" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_1"]["col1"] + else: + c = None + + df_key = infile1 + repr(header) + df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) + loaded_df[df_key] = df + + X = read_columns(df, c=c, c_option=column_option).astype(float) + # sparse input + elif input_type == "sparse": + X = mmread(open(infile1, "r")) + + # Get target y + header = "infer" if params["input_options"]["header2"] else None + column_option = params["input_options"]["column_selector_options_2"][ + "selected_column_selector_option2" + ] + if column_option in [ + "by_index_number", + "all_but_by_index_number", + "by_header_name", + "all_but_by_header_name", + ]: + c = params["input_options"]["column_selector_options_2"]["col2"] + else: + c = None + + df_key = infile2 + repr(header) + if df_key in loaded_df: + infile2 = loaded_df[df_key] + else: + infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) + loaded_df[df_key] = infile2 + + y = read_columns( + infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True + ) + if len(y.shape) == 2 and y.shape[1] == 1: + y = y.ravel() + + return X, y + + +def main(inputs, infile_estimator, infile1, infile2, out_object, out_weights=None): + """main + + Parameters + ---------- + inputs : str + File path to galaxy tool parameter + + infile_estimator : str + File paths of input estimator + + infile1 : str + File path to dataset containing features + + infile2 : str + File path to dataset containing target labels + + out_object : str + File path for output of fitted model or skeleton + + out_weights : str + File path for output of weights + + """ + with open(inputs, "r") as param_handler: + params = json.load(param_handler) + + # load model + with open(infile_estimator, "rb") as est_handler: + estimator = load_model(est_handler) + estimator = clean_params(estimator, n_jobs=N_JOBS) + + X_train, y_train = _get_X_y(params, infile1, infile2) + + estimator.fit(X_train, y_train) + + main_est = estimator + if isinstance(main_est, Pipeline): + main_est = main_est.steps[-1][-1] + if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): + if out_weights: + main_est.save_weights(out_weights) + del main_est.model_ + del main_est.fit_params + del main_est.model_class_ + if getattr(main_est, "validation_data", None): + del main_est.validation_data + if getattr(main_est, "data_generator_", None): + del main_est.data_generator_ + + with open(out_object, "wb") as output_handler: + pickle.dump(estimator, output_handler, pickle.HIGHEST_PROTOCOL) + + +if __name__ == "__main__": + aparser = argparse.ArgumentParser() + aparser.add_argument("-i", "--inputs", dest="inputs", required=True) + aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator") + aparser.add_argument("-y", "--infile1", dest="infile1") + aparser.add_argument("-g", "--infile2", dest="infile2") + aparser.add_argument("-o", "--out_object", dest="out_object") + aparser.add_argument("-t", "--out_weights", dest="out_weights") + args = aparser.parse_args() + + main( + args.inputs, + args.infile_estimator, + args.infile1, + args.infile2, + args.out_object, + args.out_weights, + )