Mercurial > repos > bgruening > sklearn_model_validation
comparison model_prediction.py @ 24:a5aed87b2cc0 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
author | bgruening |
---|---|
date | Mon, 16 Dec 2019 05:28:32 -0500 |
parents | 5895fe0b8bde |
children | 9b017b0da56e |
comparison
equal
deleted
inserted
replaced
23:56f6ebf69ddc | 24:a5aed87b2cc0 |
---|---|
1 import argparse | 1 import argparse |
2 import json | 2 import json |
3 import numpy as np | 3 import numpy as np |
4 import pandas as pd | 4 import pandas as pd |
5 import tabix | |
6 import warnings | 5 import warnings |
7 | 6 |
8 from scipy.io import mmread | 7 from scipy.io import mmread |
9 from sklearn.pipeline import Pipeline | 8 from sklearn.pipeline import Pipeline |
10 | 9 |
11 from galaxy_ml.externals.selene_sdk.sequences import Genome | |
12 from galaxy_ml.utils import (load_model, read_columns, | 10 from galaxy_ml.utils import (load_model, read_columns, |
13 get_module, try_get_attr) | 11 get_module, try_get_attr) |
14 | 12 |
15 | 13 |
16 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | 14 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) |
136 options['blacklist_regions'] = None | 134 options['blacklist_regions'] = None |
137 | 135 |
138 pred_data_generator = klass( | 136 pred_data_generator = klass( |
139 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) | 137 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) |
140 | 138 |
141 pred_data_generator.fit() | 139 pred_data_generator.set_processing_attrs() |
142 | 140 |
143 variants = pred_data_generator.variants | 141 variants = pred_data_generator.variants |
144 # TODO : remove the following block after galaxy-ml v0.7.13 | 142 |
145 blacklist_tabix = getattr(pred_data_generator.reference_genome_, | |
146 '_blacklist_tabix', None) | |
147 clean_variants = [] | |
148 if blacklist_tabix: | |
149 start_radius = pred_data_generator.start_radius_ | |
150 end_radius = pred_data_generator.end_radius_ | |
151 | |
152 for chrom, pos, name, ref, alt, strand in variants: | |
153 center = pos + len(ref) // 2 | |
154 start = center - start_radius | |
155 end = center + end_radius | |
156 | |
157 if isinstance(pred_data_generator.reference_genome_, Genome): | |
158 if "chr" not in chrom: | |
159 chrom = "chr" + chrom | |
160 if "MT" in chrom: | |
161 chrom = chrom[:-1] | |
162 try: | |
163 rows = blacklist_tabix.query(chrom, start, end) | |
164 found = 0 | |
165 for row in rows: | |
166 found = 1 | |
167 break | |
168 if found: | |
169 continue | |
170 except tabix.TabixError: | |
171 pass | |
172 | |
173 clean_variants.append((chrom, pos, name, ref, alt, strand)) | |
174 else: | |
175 clean_variants = variants | |
176 | |
177 setattr(pred_data_generator, 'variants', clean_variants) | |
178 | |
179 variants = np.array(clean_variants) | |
180 # predict 1600 sample at once then write to file | 143 # predict 1600 sample at once then write to file |
181 gen_flow = pred_data_generator.flow(batch_size=1600) | 144 gen_flow = pred_data_generator.flow(batch_size=1600) |
182 | 145 |
183 file_writer = open(outfile_predict, 'w') | 146 file_writer = open(outfile_predict, 'w') |
184 header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', | 147 header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', |